16.已知函數(shù)f(x)=(2-x)ex-ax-a,若不等式f(x)>0恰有兩個(gè)正整數(shù)解,則a的取值范圍是(  )
A.[-$\frac{1}{4}$e3,0)B.[-$\frac{1}{2}$e,0)C.[-$\frac{1}{4}$e3,$\frac{e}{2}$)D.[-$\frac{1}{4}$e3,2)

分析 利用構(gòu)造的新函數(shù)g(x)和h(x),求導(dǎo)數(shù)g′(x),從而可得a的范圍.

解答 解:令g(x)=(2-x)ex,h(x)=ax+a,
由題意知,存在2個(gè)正整數(shù),使g(x)在直線h(x)的上方,
∵g′(x)=(1-x)ex,
∴當(dāng)x>1時(shí),g′(x)<0,當(dāng)x<1時(shí),g′(x)>0,
∴g(x)max=g(1)=e,
且g(0)=2,g(2)=0,g(3)=-e3
直線h(x)恒過點(diǎn)(-1,0),且斜率為a,
由題意可知,$\left\{\begin{array}{l}{h(1)<e}\\{h(2)<0}\\{h(3)≥-{e}^{3}}\end{array}\right.$,
故實(shí)數(shù)a的取值范圍是[-$\frac{1}{4}$e3,0),
故選A.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的綜合應(yīng)用,及數(shù)形結(jié)合思想的應(yīng)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.點(diǎn)M為棱長(zhǎng)是$2\sqrt{2}$的正方體ABCD-A1B1C1D1的內(nèi)切球O球面上的動(dòng)點(diǎn),點(diǎn)N為B1C1的中點(diǎn),若滿足DM⊥BN,則動(dòng)點(diǎn)M的軌跡的長(zhǎng)度為$\frac{{4\sqrt{10}π}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)F1,F(xiàn)2為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn),過F2在的直線交橢圓于A,B兩點(diǎn),AF1⊥AB且AF1=AB,則橢圓C的離心率為$\sqrt{6}$-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.有一段“三段論”,其推理是這樣的:
對(duì)于可導(dǎo)函數(shù)f(x),若f′(x0)=0,則x=x0是函數(shù)f(x)的極值點(diǎn)…大前提因?yàn)楹瘮?shù)f(x)=x3滿足f′(0)=0,…小前提所以x=0是函數(shù)f(x)=x3的極值點(diǎn)”,結(jié)論以上推理( 。
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.沒有錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$\overrightarrow a$,$\overrightarrow b$滿足:$|\overrightarrow a|=3$,$|\overrightarrow b|=2$,$\overrightarrow a•\overrightarrow b=\frac{3}{2}$,則$|\overrightarrow a-\overrightarrow b|$=(  )
A.$\sqrt{10}$B.$\sqrt{5}$C.3D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.學(xué)校舉行班級(jí)籃球賽,某名運(yùn)動(dòng)員每場(chǎng)比賽得分記錄的莖葉圖如下:
(1)求該運(yùn)動(dòng)員得分的中位數(shù)和平均數(shù);
(2)估計(jì)該運(yùn)動(dòng)員每場(chǎng)得分超過10分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果a<b<0,那么下列不等式成立的是( 。
A.$\frac{1}{a}<\frac{1}$B.a+c<b+cC.a-c>b-cD.a•c<b•c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.用數(shù)學(xué)歸納法證明“1+2+22+…+2n+2=2n+3-1”,驗(yàn)證n=1時(shí),左邊計(jì)算所得的式子為( 。
A.1B.1+2C.1+2+22D.1+2+22+23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有3f(x)+xf′(x)>0,則不等式(x+2017)3f(x+2017)+27f(-3)>0的解集是(  )
A.(-2020,-2017)B.(-∞,-2017)C.(-2018,-2017)D.(-∞,-2020)

查看答案和解析>>

同步練習(xí)冊(cè)答案