17.計算下式的值$|\begin{array}{l}{1}&{3}\\{2}&{4}\end{array}|$+$|\begin{array}{l}{-1}&{0}\\{2}&{4}\end{array}|$=-6.

分析 由已知利用二階行列式展開法則直接求解.

解答 解:$|\begin{array}{l}{1}&{3}\\{2}&{4}\end{array}|$+$|\begin{array}{l}{-1}&{0}\\{2}&{4}\end{array}|$=4-6+(-4)-0=-6.
故答案為:-6.

點評 本題考查二階行列式求值,是基礎(chǔ)題,解題時要認(rèn)真審題,注意行列式展開法則的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=ln(x-1)+$\frac{2a}{x}$(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>2,xln(x-1)>a(x-2)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,在四棱錐P-ABCD中,ABCD為矩形,PA⊥PD,平面PAD⊥平面ABCD,且AB=6,AD=4,PA=PD,E位PC的中點
(Ⅰ)求證:平面PAB⊥平面PCD
(Ⅱ)F為底面ABCD上一點,當(dāng)EF∥平面PAD時,求EF與平面PBC所成角的正弦值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=[x3+(a-1)x2-ax+a]ex,若x=0是f(x)的一個極大值點,則實數(shù)a的取值范圍為(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.對于拋物線C,設(shè)直線l過C的焦點F,且l與C的對稱軸的夾角為$\frac{π}{4}$.若l被C所截得的弦長為4,則拋物線C的焦點到頂點的距離為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=2,c=3,B=120°,則b=$\sqrt{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若拋物線y2=ax的準(zhǔn)線方程為x=1,則焦點坐標(biāo)為(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線x2-y2=1的左、右頂點分別為A1、A2,動直線l:y=kx+m與圓x2+y2=1相切,且與雙曲線左、右兩支的交點分別為P1(x1,y1),P2(x2,y2),則x2-x1的最小值為( 。
A.$2\sqrt{2}$B.2C.4D.$3\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=sin2x-4sin3xcosx的最小正周期與奇偶性分別是( 。
A.$\frac{π}{2}$;奇函數(shù)B.$\frac{π}{4}$;奇函數(shù)C.$\frac{π}{2}$;偶函數(shù)D.$\frac{π}{4}$;偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案