18.-90°+k•360°(k∈z)表示的是(  )
A.第一象限角B.第三象限角C.界限角D.第四象限角

分析 根據(jù)k•360°+α(k∈z)的形式直接得到答案.

解答 解:-90°+k•360°(k∈z)表y軸的負(fù)半軸上的角,
故選:C.

點(diǎn)評(píng) 本題考查象限角和界限角的概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.質(zhì)點(diǎn)沿直線(xiàn)運(yùn)動(dòng)的路程和時(shí)間的關(guān)系是s=$\root{5}{t}$.則質(zhì)點(diǎn)在t=4時(shí)的速度是( 。
A.$\frac{1}{2\root{5}{{2}^{3}}}$B.$\frac{1}{10\root{5}{{2}^{3}}}$C.$\frac{1}{\frac{2}{5}\root{5}{{2}^{3}}}$D.$\frac{1}{\frac{1}{10}\root{5}{{2}^{3}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.sin22°30′•cos22°30′的值為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.-$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.己知正項(xiàng)等比數(shù)列{an}滿(mǎn)足a1+a2=3,a2a3a4=64.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an(an+1),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.寫(xiě)出下列各角終邊相同的角的集合,并把其中在-360°~720°范圍內(nèi)的角寫(xiě)出來(lái):
(1)68°;
(2)155°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知y=$\sqrt{x+4}$,則y′${|}_{x=1}^{\;}$=$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知點(diǎn)O為坐標(biāo)原點(diǎn),F(xiàn)為橢圓C:$\frac{x^2}{3}+{y^2}$=1的左焦點(diǎn),點(diǎn)P、Q在橢圓上,點(diǎn)P、Q、R滿(mǎn)足$\overrightarrow{OF}$•$\overrightarrow{PQ}$=0,$\overrightarrow{QR}$+2$\overrightarrow{PQ}$=$\overrightarrow{0}$,則$\sqrt{3}|{PF}|+|{OR}$|的最大值為( 。
A.6B.$\sqrt{3}$(1+$\sqrt{2}$+$\sqrt{3}$)C.3+3$\sqrt{2}$D.3+3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為4,E,F(xiàn)分別是AB,A1C1的中點(diǎn),則EF的長(zhǎng)等于2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知$\overrightarrow a,\overrightarrow b$滿(mǎn)足:$\left|{\overrightarrow a}\right|=2,\left|{\overrightarrow b}\right|=1,\left|{\overrightarrow a-\overrightarrow b}\right|=\sqrt{6}$,則$\left|{\overrightarrow a+\overrightarrow b}\right|$( 。
A.$\sqrt{3}$B.$\sqrt{10}$C.3D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案