12.若1,a,5成等差數(shù)列,4,b,9成等比數(shù)列,則ab=±18.

分析 由題意可得2a=2+4,b2=1×9,解之可得a,b,代入可得所求.

解答 解:由題意可得2a=1+5,b2=4×9,
解之可得a=3,b=±6,
ab=±18.
故答案為:±18.

點評 本題考查等差中項和等比中項的定義和應(yīng)用,涉及分類討論的思想,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若曲線$\frac{x^2}{4-m}+\frac{y^2}{13-m}=1$表示雙曲線,則焦點坐標為(0,±3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,點E在直角三角形ABC的斜邊AB上,四邊形CDEF為正方形,已知正方形CDEF的面積等于36.設(shè)AF=x,直角三角形ABC的面積S=f(x).
(Ⅰ)求函數(shù)f(x)表達式;
(Ⅱ)利用函數(shù)單調(diào)性定義求f(x)的單調(diào)區(qū)間,并求出f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)x,y∈R,給出四個點A(2x-1,y),B(1,1),C(x2+1,4),D(x2-1,1)
(1)若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,把y表示成x的函數(shù)y=f(x);
(2)對數(shù)列{an},設(shè)a1=a2=1,且${4}^{{a}_{n+1}}$=$\frac{2}{3}$f(an)+$\frac{4}{3}$,(n≥2,n∈N*),求$\underset{lim}{n→∞}$an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|2x-1|-|x+2|.
(1)求不等式f(x)>0的解集;
(2)若存在x0∈R,使得f(x0)+2a2<4a,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$都是單位向量,且$\overrightarrow{p}$=$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$,試求|$\overrightarrow{p}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)y=lnx-x3+2x的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.數(shù)列{an}中,a1=0,且對任意k∈N*,a2k-1,a2k,a2k+1成等差數(shù)列,其公差為2k,則Tn=$\frac{{2}^{2}}{{a}_{2}}+\frac{{3}^{2}}{{a}_{3}}+$…+$\frac{4{n}^{2}}{{a}_{2n}}$=4n-$\frac{3}{2}$-$\frac{1}{2n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知空間直角坐標系中,點A(-1,1,2),點B(-1,1,0),點C(1,1,0).
(1)求證:△ABC是等腰直角三角形.
(2)將△ABC繞直角邊旋轉(zhuǎn)一周得到的旋轉(zhuǎn)體叫什么?并求出這個旋轉(zhuǎn)體的體積.

查看答案和解析>>

同步練習(xí)冊答案