3.如圖,點(diǎn)E在直角三角形ABC的斜邊AB上,四邊形CDEF為正方形,已知正方形CDEF的面積等于36.設(shè)AF=x,直角三角形ABC的面積S=f(x).
(Ⅰ)求函數(shù)f(x)表達(dá)式;
(Ⅱ)利用函數(shù)單調(diào)性定義求f(x)的單調(diào)區(qū)間,并求出f(x)的最小值.

分析 (Ⅰ)根據(jù)三角形的面積公式計(jì)算即可;
(Ⅱ)根據(jù)函數(shù)單調(diào)性的定義判斷即可.

解答 解:(Ⅰ)∵正方形CDEF的面積等于36,
∴$\frac{EF}{CD+BD}$=$\frac{AF}{AF+CF}$=$\frac{6}{6+BD}$=$\frac{x}{6+x}$,
∴BD=$\frac{36}{x}$,
∴f(x)=$\frac{1}{2}$(6+x)(6+$\frac{36}{x}$)=3x+$\frac{108}{x}$+36;(x>0);
(Ⅱ)設(shè)x1>x2>0,
則f(x1)-f(x2)=3x1+$\frac{108}{{x}_{1}}$-3x2-$\frac{108}{{x}_{2}}$=3(x1-x2)(1-$\frac{36}{{{x}_{1}x}_{2}}$),
當(dāng)0<x2<x1<6時(shí),1-$\frac{36}{{{x}_{1}x}_{2}}$<0,
∴f(x1)-f(x2)<0,函數(shù)在(0,6)遞減,
當(dāng)6<x2<x1時(shí),1-$\frac{36}{{{x}_{1}x}_{2}}$>0,
∴f(x1)-f(x2)>0,函數(shù)在(0,6)遞增,
∴x=6時(shí),f(x)最小,f(x)的最小值是90.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查求函數(shù)的解析式問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=log9(9x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若函數(shù)y=f(x)的圖象與直線y=$\frac{1}{2}$x+b沒(méi)有交點(diǎn),求b的取值范圍;
(3)設(shè)h(x)=f(x)-log9(a•3x-$\frac{4}{3}$a),若函數(shù)h(x)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)AB為過(guò)橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)右焦點(diǎn)F任意一條弦,若M點(diǎn)在x軸上且直線MF為∠AMB的平分線,則稱(chēng)M為該橢圓的“右分點(diǎn)”.
(1)若橢圓E的離心率為$\frac{1}{2}$,右焦點(diǎn)到右準(zhǔn)線的距離為3,求:
①橢圓E的方程;
②“右分點(diǎn)”M的坐標(biāo);
(2)猜想橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)“右分點(diǎn)”M的位置,并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=$\frac{\sqrt{4-x}}{x+2}$的定義域?yàn)閧x|x≤4且x≠-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.{an}為等差數(shù)列,每相鄰兩項(xiàng)ak,ak-1分別為方程x2-4k,x+$\frac{2}{{c}_{k}}$=0(k是正整數(shù))的兩根.
(1)求{an}的通項(xiàng)公式;
(2)求c1+c2+…+cn之和;
(2)對(duì)于以上的數(shù)列{an}和{cn},整數(shù)981是否為數(shù)列{$\frac{2{a}_{n}}{{c}_{n}}$}中的項(xiàng)?若是,則求出相應(yīng)的項(xiàng)數(shù);若不是,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知雙曲線C:$\frac{{x}^{2}}{4}-{y}^{2}$=1,P為C上的任意點(diǎn).
(1)求證:點(diǎn)P到雙曲線C的兩條漸近線的距離的乘積是一個(gè)常數(shù);
(2)設(shè)F1,F(xiàn)2分別為雙曲線C的兩個(gè)焦點(diǎn),若∠F1PF2為鈍角,求點(diǎn)P的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若s,t均為正數(shù),且s+t=1,則$\frac{st}{(st+1)(st+4)}$的最大值是(  )
A.$\frac{4}{85}$B.$\frac{7}{72}$C.$\frac{1}{9}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若1,a,5成等差數(shù)列,4,b,9成等比數(shù)列,則ab=±18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知點(diǎn)G是△ABC的重心,A(0,-2),B(0,2),在x軸上有一點(diǎn)M滿(mǎn)足;|$\overrightarrow{MA}$|=|$\overrightarrow{MC}$|,$\overrightarrow{GM}$=λ$\overrightarrow{AB}$(λ∈R).
(I)求點(diǎn)C的軌跡方程.
(Ⅱ)直線l與C的軌跡交于P,Q兩,弦PQ的中點(diǎn)坐標(biāo)為(-$\frac{3}{4}$,$\frac{1}{4}$),求弦長(zhǎng)|PQ|.

查看答案和解析>>

同步練習(xí)冊(cè)答案