1.雙曲線x2-y2=2的右準(zhǔn)線方程為x=1.

分析 先把雙曲線方程化為標(biāo)準(zhǔn)形式,再利用雙曲線的簡單性質(zhì)直接求解.

解答 解:把x2-y2=2化為標(biāo)準(zhǔn)形式,得:$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{2}=1$
∴a=b=$\sqrt{2}$,c=2,
∴其右準(zhǔn)線方程為:x=1.
故答案為:x=1.

點評 本題以雙曲線方程為載體,考查雙曲線的標(biāo)準(zhǔn)方程,考查雙曲線的幾何性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知x>1,且x≠$\frac{4}{3}$,f(x)=1+logx3,g(x)=2logx2,試比較f(x)與g(x)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知點P(x,y,z)到原點的距離為1,則x,y,z所滿足的關(guān)系式為x2+y2+z2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一橢圓的中心在原點,焦點F1、F2在x軸上,點P是橢圓上一點,線段PF1與y軸的交點M是該線段的中點,若|PF2|=|MF2|,則橢圓的離心率等于( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,在四棱錐P-ABCD中,底面ABCD為正方形,側(cè)棱PA⊥底面ABCD,PA=AD=1,E、F分別為PD、AC上的動點,且$\frac{DE}{DP}$=$\frac{CF}{CA}$=λ(0<λ<1).
(Ⅰ)當(dāng)λ=$\frac{1}{2}$時,求證:AD⊥EF;
(Ⅱ)求三棱錐E-FAD的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2
(1)若F為PC的中點,求證:EF⊥平面PAC;
(2)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知如圖:四邊形ABCD是矩形,BC⊥平面ABE,且AE=EB=BC=2,點F為CE上一點,且BF⊥平面ACE.
(1)求證:AE∥平面BFD;
(2)求二面角C-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若曲線C1:$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù)),曲線C2:$\left\{{\begin{array}{l}{x=acosϕ}\\{y=bsinϕ}\end{array}}\right.$(ϕ為參數(shù)),以O(shè)為極點,x的正半軸為極軸建立極坐標(biāo)系,射線l:θ=α與C1,C2分別交于P,Q兩點,當(dāng)α=0時,|PQ|=2,當(dāng)$α=\frac{π}{2}$時,P與Q重合.
(Ⅰ)把C1、C2化為普通方程,并求a,b的值;
(Ⅱ)直線l:$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=-1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t為參數(shù))與C2交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,點A(0,1)在橢圓C1內(nèi),半焦距長為1,P為橢圓C1上任意一點,且|PA|+|PF2|的最大值為4+$\sqrt{2}$,過點F2的直線l與橢圓C1相交于M(x1,y1)、N(x2,y2)兩點.
(1)求橢圓C1的方程;
(2)求使$\overrightarrow{{F}_{1}M}$+$\overrightarrow{{F}_{2}M}$=$\overrightarrow{{F}_{1}R}$成立的動點R的軌跡方程;
(3)試問△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,請求出這個最大值及此時的直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案