分析 (1)先證 CD⊥平面PAC,由三角形中位線的性質(zhì)得EF∥CD,得到EF⊥平面PAC;
(2)把四邊形面積分成2個(gè)直角三角形面積之和,代入棱錐體積公式進(jìn)行計(jì)算.
解答 (1)證明:∵PA⊥平面ABCD,∴PA⊥CD.
又AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC.
∵E、F分別為PD、PC中點(diǎn),
∴EF∥CD,
∴EF⊥平面PAC;
(2)解:在Rt△BAC中,∠ABC═90°,∠BAC=60°,AB=1,
∴BC=$\sqrt{3}$,AC=2;
在Rt△DAC中,∠ACD═90°,∠CAD=60°,AC=2,
∴CD=2$\sqrt{3}$,AD=4;
故底面ABCD的面積為S=$\frac{1}{2}$×1×$\sqrt{3}$+$\frac{1}{2}$×2×2$\sqrt{3}$=$\frac{5\sqrt{3}}{2}$
∴VP-ABCD=$\frac{1}{3}$×S×PA=$\frac{1}{3}$×$\frac{5\sqrt{3}}{2}$×2=$\frac{5\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查用分割法求出棱錐的底面積,直線與平面垂直的判定,考查了學(xué)生的空間想象力及計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com