8.在一段時(shí)間內(nèi),分5次測得某種商品的價(jià)格x(萬元)和需求量y(噸)之間的一組數(shù)據(jù)為:
價(jià)格x1.41.61.822.2
需求量Y12107y03
若y關(guān)于x的線性回歸方程為$\widehaty$=-11.5x+28.1,則上表中的y0值為( 。
A.7.4B.5.1C.5D.4

分析 求出樣本中心點(diǎn),代入方程,即可得出結(jié)論.

解答 解:由題意,$\overline{x}$=$\frac{9}{5}$,$\overline{y}$=$\frac{32+{y}_{0}}{5}$,
∵y關(guān)于x的線性回歸方程為$\widehaty=-11.5x+28.1$,
∴$\frac{{32+{y_0}}}{5}=-11.5×\frac{9}{5}+28.1∴{y_0}=5$
故選C.

點(diǎn)評 本題考查線性回歸方程,考查學(xué)生的計(jì)算能力,正確運(yùn)用線性回歸方程經(jīng)過樣本中心點(diǎn)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=|x-2|+|x+a|(a∈R).
(1)若a=1時(shí),求不等式f(x)≥4的解集;
(2)若不等式f(x)≤2x的解集為[1,+∞),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{{a{x^2}+x+b}}{x^2}$的單調(diào)遞減區(qū)間為(-∞,0)和(0,+∞).
(1)求實(shí)數(shù)b的值;
(2)當(dāng)x>0時(shí),有$\frac{1}{f(x)}$+f(ex)≥a+1成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若執(zhí)行如圖所示的程序框圖,若?是i<6,則輸出的S值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=|x-a|.
(1)若a=2,解不等式:xf(x)<x;
(2)若f(x)+f(x+2a)≥|a|-|a-1|+3對任意的實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,P、Q是單位圓上兩個(gè)點(diǎn),圓心O為坐標(biāo)原點(diǎn),∠POQ=90°,且P($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),則Q點(diǎn)的橫坐標(biāo)為( 。
A.-$\frac{1}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.-$\frac{{\sqrt{2}}}{2}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知與圓C:x2+y2-2x-2y+1=0相切的直線l分別交x軸和y軸正軸于A,B兩點(diǎn),O為原點(diǎn),且|OA|=a,|OB|=b(a>2,b>2).求證:
(1)(a-2)(b-2)=2;
(2)求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知AB是圓C:(x-1)2+y2=1的直徑,點(diǎn)P為直線x-y+3=0上任意一點(diǎn),則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值是( 。
A.2$\sqrt{2}$-1B.1-2$\sqrt{2}$C.7D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=logax-x+2(a>0,且a≠1)有且僅有兩個(gè)零點(diǎn)的充要條件是( 。
A.0<a<1B.a>1C.1<a<2D.a>2

查看答案和解析>>

同步練習(xí)冊答案