分析 由題意,DC⊥AC,DC⊥BC,利用V=$\frac{1}{3}$(S1+S2+S3+S4)R,即可得出結(jié)論.
解答 解:由題意,V=$\frac{1}{3}$(S1+S2+S3+S4)R,DC⊥AC,DC⊥BC,∴DC⊥平面ABC,
分別設(shè)S△BCD、S△ACD、S△ABD、S△ABC為S1、S2、S3、S4,則S1=$\frac{1}{2}×4×5$=10,S2=$\frac{1}{2}×4×5$=10,S3=$\frac{1}{2}×4×\sqrt{41-16}$=10,S4=$\frac{1}{2}×8×\sqrt{25-16}$=12,
∴由V=$\frac{1}{3}$(S1+S2+S3+S4)R,可得$\frac{1}{3}×12×4$=$\frac{1}{3}×(10+10+10+12)R$
∴R=$\frac{8}{7}$.
故答案為:$\frac{8}{7}$.
點評 本題借助于一個平面內(nèi)關(guān)于內(nèi)切圓半徑的正確命題,通過將其推廣到空間的一個結(jié)論,考查了三角形面積公式和錐體體積公式等知識點,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | -$\frac{1}{3}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=|x| | B. | f(x)=$\frac{1}{x}$ | C. | f(x)=lnx | D. | f(x)=ex |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1),(2,+∞) | B. | (-∞,0),(1,2) | C. | (0,1),(2,+∞) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com