7.設(shè)a=${∫}_{0}^{π}$(sinx+cosx)dx,則二項(xiàng)式(ax-$\frac{1}{\sqrt{x}}$)6展開(kāi)式中常數(shù)項(xiàng)是60.

分析 求定積分可得a的值,在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng).

解答 解:a=${∫}_{0}^{π}$(sinx+cosx)dx=(sinx-cosx)${|}_{0}^{π}$=2,
則二項(xiàng)式(ax-$\frac{1}{\sqrt{x}}$)6 =(2x-$\frac{1}{\sqrt{x}}$)6
它的展開(kāi)式的通項(xiàng)公式為Tr+1=${C}_{6}^{r}$•(-1)r•26-r•${x}^{6-\frac{3r}{2}}$.
令6-$\frac{3r}{2}$=0,求得r=4,
可得展開(kāi)式中常數(shù)項(xiàng)是${C}_{6}^{4}$•22=60,
故答案為:60.

點(diǎn)評(píng) 本題主要考查求定積分,二項(xiàng)展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于虛軸對(duì)稱,z1=2+i,則$|{\frac{z_2}{z_1}}|$=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,$AB=\sqrt{3}$,AC=1,∠B=30°,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,則∠C=(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.執(zhí)行如圖所示的程序框圖,則輸出s的值為( 。
A.$\frac{3}{4}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.為了測(cè)算如圖所示的陰影部分的面積,作一個(gè)邊長(zhǎng)為3的正方形將其包含在內(nèi),并向正方形內(nèi)隨機(jī)投擲600個(gè)點(diǎn).已知恰有200個(gè)點(diǎn)落在陰影部分內(nèi),據(jù)此,可估計(jì)陰影部分的面積是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)a>b>0,則a+$\frac{1}$+$\frac{1}{a-b}$的最小值為( 。
A.2B.3C.4D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知A,B,C是非等邊銳角△ABC的三個(gè)內(nèi)角,非零向量$\overrightarrow{p}$=(sinA-cosB,cosA-sinC),$\overrightarrow{q}$=(1,-1),則$\overrightarrow{p}$與$\overrightarrow{q}$的夾角是( 。
A.銳角B.鈍角C.直角D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知A(1,0),曲線C:y=eax恒過(guò)點(diǎn)B,若P是曲線C上的動(dòng)點(diǎn),且$\overrightarrow{AB}$•$\overrightarrow{AP}$的最小值為2,則a的值為( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.${∫}_{-1}^{2}$$\sqrt{4-{x}^{2}}$dx=$\frac{4π}{3}$+$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案