A. | 30° | B. | 45° | C. | 60° | D. | 75° |
分析 利用正弦定理,求出C,從而可求A,利用△ABC的面積確定C的大小,即可得出結(jié)論.
解答 解:∵△ABC中,B=30°,AC=1,AB=$\sqrt{3}$,由正弦定理可得:
$\frac{\sqrt{3}}{sinC}$=$\frac{1}{sin30°}$,
∴sinC=$\frac{\sqrt{3}}{2}$,
∴C=60°或120°,
C=60°時(shí),A=90°;C=120°時(shí)A=30°,
當(dāng)A=90°時(shí),∴△ABC的面積為$\frac{1}{2}$•AB•AC•sinA=$\frac{\sqrt{3}}{2}$,
當(dāng)A=30°時(shí),∴△ABC的面積為$\frac{1}{2}$•AB•AC•sinA=$\frac{\sqrt{3}}{4}$,不滿足題意,
則C=60°.
故選:C.
點(diǎn)評(píng) 本題考查正弦定理的運(yùn)用,考查三角形面積的計(jì)算,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5π}{24}$ | B. | $\frac{13π}{24}$ | C. | $\frac{17π}{24}$ | D. | $\frac{23π}{24}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com