分析 由于A、B兩地在同一緯度圈上,可以先計(jì)算出它們的經(jīng)度差和45°的緯圓半徑,再求出A、B兩地對(duì)應(yīng)的AB弦長(zhǎng),以及球心角,求出A、B兩點(diǎn)在緯度圈上的劣弧長(zhǎng)、球面距離,即可得到結(jié)論.
解答 解:設(shè)北緯45°圈的半徑為r,
∵點(diǎn)A在東經(jīng)70°處,點(diǎn)B在東經(jīng)160°處,
∴甲、乙兩地對(duì)應(yīng)點(diǎn)的緯圓半徑是r=Rcos45°=$\frac{\sqrt{2}}{2}$R,經(jīng)度差是90°,
∴A、B兩點(diǎn)在緯度圈上的劣弧長(zhǎng)為$\frac{\sqrt{2}}{4}$πR,
∵AB=$\sqrt{2}$r=R,
∴∠AOB=$\frac{π}{3}$,
∴A、B兩點(diǎn)的球面距離為$\frac{1}{3}$πR,
∴A、B兩點(diǎn)在緯度圈上的劣弧長(zhǎng)與A、B兩點(diǎn)的球面距離之比是$\frac{\frac{\sqrt{2}}{4}πR}{\frac{1}{3}πR}$=$\frac{3\sqrt{2}}{4}$,
故答案為:$\frac{3\sqrt{2}}{4}$.
點(diǎn)評(píng) 本題主要考查了球面距離及相關(guān)計(jì)算,考查空間想象力,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{47}{32}$ | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一、二、四象限 | B. | 第一、二、三象限 | C. | 第一、三、四象限 | D. | 第二、三、四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({\frac{1}{3},1})$ | B. | $({-∞,\frac{1}{3}})∪({1,+∞})$ | C. | (-$\frac{1}{3}$,$\frac{1}{3}$) | D. | $({-∞,-\frac{1}{3}})∪({\frac{1}{3},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com