A. | $({\frac{1}{3},1})$ | B. | $({-∞,\frac{1}{3}})∪({1,+∞})$ | C. | (-$\frac{1}{3}$,$\frac{1}{3}$) | D. | $({-∞,-\frac{1}{3}})∪({\frac{1}{3},+∞})$ |
分析 由已知可得,函數(shù)f(x)為偶函數(shù),且在x≥0時為增函數(shù),在x≤0時為減函數(shù),若f(x)>f(2x-1),則|x|>|2x-1|,解得答案.
解答 解:∵函數(shù)f(x)=e1+|x|-$\frac{1}{{1+{x^2}}}$滿足f(-x)=f(x),
故函數(shù)f(x)為偶函數(shù),
當x≥0時,y=e1+|x|=e1+x為增函數(shù),y=$\frac{1}{{1+{x^2}}}$為減函數(shù),
故函數(shù)f(x)在x≥0時為增函數(shù),在x≤0時為減函數(shù),
若f(x)>f(2x-1),則|x|>|2x-1|,
即x2>4x2-4x+1,即3x2-4x+1<0,
解得:x∈$(\frac{1}{3},1)$,
故選:A.
點評 本題考查的知識點是函數(shù)單調性,函數(shù)的奇偶性,絕對值不等式的解法,難度中檔.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 7 | C. | 9 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -$\frac{1}{2}$ | C. | 1或-$\frac{1}{2}$ | D. | 1或$\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com