13.設(shè)f:A→B是從集合A到集合B的映射,其中A=B={(x,y)|x∈R,y∈R},f(x,y)→(x+y,x-y).那么A中元素(1,3)的象是(4,-2);B中元素(1,3)的原象是(2,-1).

分析 (x,y)在映射f下的象是(x+y,x-y),由此運(yùn)算規(guī)則求(1,3)在f下的象即可;再設(shè)原象為(x,y),由映射規(guī)則建立方程求解即可得到(1,3)在f下的原象.

解答 解:∵A=B={(x,y)|x∈R,y∈R},f(x,y)→(x+y,x-y).
∴A中元素(1,3)的象是1+3=4,1-3=-2,
故A中元素(1,3)的象是(4,-2),
解:設(shè)原象為(x,y),則有x+y=1,x-y=3,
解得x=2,y=-1,
則(1,3)在f下的原象是 (2,-1).
故答案為:(4,-2),(2,-1)

點(diǎn)評 本題考查映射,解題的關(guān)鍵是理解所給的映射規(guī)則,根據(jù)此規(guī)則建立方程求出原象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=-2x+3,x∈[-2,3)的值域是(  )
A.[-1,3)B.[-3,7)C.(-1,3]D.(-3,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)集合A={-1≤x≤2},B={x|0≤x≤4,x∈Z},則A∩B={0,1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.一批產(chǎn)品共100件,其中有3件不合格品,從中隨機(jī)抽取n(n∈N*)件,用x表示所抽取的n件產(chǎn)品中不合格品的個(gè)數(shù).
(1)若n=2,求x的概率分布;
(2)求使x=1的概率取得最大值的n的值.(參考數(shù)據(jù):$\sqrt{9901}$≈99.50)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)${0.064^{-\frac{1}{3}}}-{({-\frac{1}{8}})^0}+{16^{\frac{3}{4}}}+{0.25^{\frac{1}{2}}}$;
(2)${2^{2+{{log}_2}5}}-{2^{{{log}_2}3{{log}_3}5}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|-1<x<2},B={x|0<x<3},則A∩B等于( 。
A.(-1,3)B.(0,2)C.(-1,0)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(x)=x+tanA•tanB-1,其中A,B是△ABC的內(nèi)角.
(1)若[f(1)-1]cosA•cosB=$\frac{1}{2}$,且A=$\frac{π}{4}$,a=$\sqrt{2}$.求c的長;
(2)若函數(shù)f(x)在(0,1)內(nèi)有零點(diǎn),試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知二次函數(shù)y=ax2+bx+c(a≠0)是偶函數(shù),且滿足:y=logm(x-1)的圖象過定點(diǎn)(c,0),方程f(x)=2x兩個(gè)相等的實(shí)數(shù)根,將函數(shù)f(x)向右平移1個(gè)單位;向下平移$\frac{3}{2}$個(gè)單位,得到g(x)的圖象.
(1)求g(x)的解析式;
(2)試問:是否存在實(shí)數(shù)m、n,使函數(shù)g(x)在區(qū)間[n,n+2]上是單調(diào)函數(shù),且其值域?yàn)閇m.m+2]?若存在,求出實(shí)數(shù)m、n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在等差數(shù)列{an}中,若a6+a14=2,則a10=1.

查看答案和解析>>

同步練習(xí)冊答案