14.已知數(shù)列{an}的前n項和為Sn且滿足Sn+an=2n.
(1)寫出a1,a2,a3,并推測an的表達式;
(2)用數(shù)學歸納法證明所得的結論.

分析 (1)計算a1,a2,a3,….猜測an=2-$\frac{1}{2n}$.
(2)利用數(shù)學歸納法即可證明.

解答 解:(1)a1=$\frac{3}{2}$,a2=$\frac{7}{4}$,a3=$\frac{15}{8}$,….
猜測an=2-$\frac{1}{2n}$.
(2)①由(1)已得當n=1時,命題成立;
②假設n=k時,命題成立,即ak=2-$\frac{1}{2k}$,
當n=k+1時,a1+a2+…+ak+ak+1+ak+1=2(k+1)+1,
且a1+a2+…+ak=2k+1-ak
∴2k+1-ak+2ak+1=2(k+1)+1=2k+3,
∴2ak+1=2+2-$\frac{1}{2k}$,ak+1=2-$\frac{1}{2k+1}$,
即當n=k+1時,命題成立.(11分)
根據(jù)①②得n∈N+時,an=2-$\frac{1}{2n}$都成立.

點評 本題考查了遞推關系、數(shù)學歸納法的應用,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.在三角形ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,若acosA=bsinB,則sinAcosA+cos2B等于(  )
A.-$\frac{1}{2}$B.1C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.將偶數(shù)按如圖所示的規(guī)律排列下去,且用amn表示位于從上到下第m行,從左到右n列的數(shù),比如a22=6,a43=18,若amn=2016,則有   (  )
A.m=44,n=28B.m=44,n=29C.m=45,n=28D.m=45,n=29

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=x2-ax,g(x)=lnx.
(1);令F(x)=f(x)-g(x),求F(x)的單調區(qū)間;
(2)設r(x)=f(x)+g($\frac{1+ax}{2}$)對任意a∈(1,2),總存在x∈[$\frac{1}{2}$,1]使不等式r(x)>k(1-a2)成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.觀察下列不等式:
$1+\frac{1}{2^3}<\frac{7}{6}$,
$1+\frac{1}{2^3}+\frac{1}{3^3}<\frac{29}{24}$,
$1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}<\frac{49}{40}$,
$1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}<\frac{37}{30}$,
….
照此規(guī)律,第五個不等式為$1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+\frac{1}{6^3}<$( 。
A.$\frac{26}{21}$B.$\frac{29}{20}$C.$\frac{67}{54}$D.$\frac{95}{78}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.點(7,-4)到拋物線y2=16x的焦點的距離是5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.拋物線y=$-\frac{1}{4}$x2的焦點坐標是(0,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.△ABC的三個頂點都在圓O上,$\overrightarrow{AO}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$,且|$\overrightarrow{BC}$|=10,則圓O的面積為25π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)y=f(x)的定義R在上的奇函數(shù),當x<0時f(x)=x+1,那么不等式f(x)<$\frac{1}{2}$的解集是( 。
A.$[{0,\frac{3}{2}})$B.$({-∞,-\frac{1}{2}})∪[{0,\frac{3}{2}})$C.$({-∞,-\frac{1}{2}})$D.$({-∞,-\frac{1}{2}})∪({0,\frac{3}{2}})$

查看答案和解析>>

同步練習冊答案