分析 (1)計算a1,a2,a3,….猜測an=2-$\frac{1}{2n}$.
(2)利用數(shù)學歸納法即可證明.
解答 解:(1)a1=$\frac{3}{2}$,a2=$\frac{7}{4}$,a3=$\frac{15}{8}$,….
猜測an=2-$\frac{1}{2n}$.
(2)①由(1)已得當n=1時,命題成立;
②假設n=k時,命題成立,即ak=2-$\frac{1}{2k}$,
當n=k+1時,a1+a2+…+ak+ak+1+ak+1=2(k+1)+1,
且a1+a2+…+ak=2k+1-ak
∴2k+1-ak+2ak+1=2(k+1)+1=2k+3,
∴2ak+1=2+2-$\frac{1}{2k}$,ak+1=2-$\frac{1}{2k+1}$,
即當n=k+1時,命題成立.(11分)
根據(jù)①②得n∈N+時,an=2-$\frac{1}{2n}$都成立.
點評 本題考查了遞推關系、數(shù)學歸納法的應用,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | 1 | C. | -1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | m=44,n=28 | B. | m=44,n=29 | C. | m=45,n=28 | D. | m=45,n=29 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{26}{21}$ | B. | $\frac{29}{20}$ | C. | $\frac{67}{54}$ | D. | $\frac{95}{78}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[{0,\frac{3}{2}})$ | B. | $({-∞,-\frac{1}{2}})∪[{0,\frac{3}{2}})$ | C. | $({-∞,-\frac{1}{2}})$ | D. | $({-∞,-\frac{1}{2}})∪({0,\frac{3}{2}})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com