1.已知集合A={x|y=lgx},B={-2,-1,0,1,2},則(∁RA)∩B=(  )
A.{-2,-1}B.{-2,-1,0}C.{0,1,2}D.{1,2}

分析 求出集合A的解集,求出A的補集,找出B與A補集的交集即可.

解答 解:A={x|y=lgx}=(0,+∞),
則∁RA=(-∞,0],
∵B={-2,-1,0,1,2},
∴(∁RA)∩B={-2,-1,0},
故選:B.

點評 本題考查了集合的混合運算,屬于基礎(chǔ)題,關(guān)鍵是掌握集合混合運算的法則.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=3|x+2|-|x-4|.
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)設(shè)m,n,k為正實數(shù),且m+n+k=f(0),求證:mn+mk+nk≤$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個多面體的三視圖如圖所示,則該多面體的表面積為( 。
A.$\frac{22}{3}$B.21C.21+$\frac{\sqrt{3}}{2}$D.21+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等腰直角三角形ABC中,∠C=90°,AC=BC=1,點M,N分別是AB,BC中點,點P是△ABC(含邊界)內(nèi)任意一點,則$\overrightarrow{AN}$•$\overrightarrow{MP}$的取值范圍是( 。
A.[-$\frac{3}{4}$,$\frac{3}{4}$]B.[-$\frac{1}{4}$,$\frac{3}{4}$]C.[-$\frac{3}{4}$,$\frac{1}{4}$]D.[$\frac{1}{4}$,$\frac{3}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直用坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3t-3\\ y=4t-9\end{array}\right.$(t為參數(shù)).在以原點O為極點,x軸的正半軸為極軸的極坐標系中,圓心A的極坐標為(2,$\frac{2π}{3}}$),圓A的半徑為3.
(1)直接寫出直線l的直角坐標方程,圓A的極坐標方程;
(2)設(shè)B是線l上的點,C是圓A上的點,求|BC|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.?dāng)?shù)列{an},{bn}中,an=ln$\frac{{θ}^{n}-1}{{θ}^{n}+1}$+2n,bn=ln$\frac{{θ}^{n}+1}{{θ}^{n}-1}$-n,θ為常數(shù),若a8=20,則b8=( 。
A.-12B.-6C.12D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)已知函數(shù)f(x)=|x+2a|+|x-$\frac{2}{a}$|≥5(a>0)對任意x∈R恒成立,求實數(shù)a的取值范圍;
(2)求函數(shù)g(x)=3$\sqrt{x-3}$+4$\sqrt{4-x}$的最大值及g(x)取最大值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=x2+a|x|+2,x∈R在區(qū)間[3,+∞)和[-2,-1]上均為增函數(shù),則實數(shù)a的取值范圍是( 。
A.[-$\frac{11}{3}$,-3]B.[-6,-4]C.[-3,-2$\sqrt{2}}$]D.[-4,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow m$=(2,-4),$\overrightarrow n$=(a,1)(a∈R)相互垂直,則|${\overrightarrow m$+$\overrightarrow n}$|的值為5.

查看答案和解析>>

同步練習(xí)冊答案