分析 利用分段函數(shù)直接判斷x的范圍,求解即可.
解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{1,0≤x≤1}\\{3-x,x<0或x>1}\end{array}\right.$,f[f(x)]=1,
當(dāng)x∈[0,1]時(shí),f[f(x)]=1恒成立.
當(dāng)x<0時(shí),f(x)=3-x>3,可得3-(3-x)=1,不成立;
當(dāng)x>1時(shí),f(x)=3-x,
若1<3-x≤2.即x∈[1,2),可得3-(3-x)=1,不成立;
若0≤3-x≤1即x∈[2,3]時(shí),f[f(x)]=1,恒成立.
若3-x<0,即x>3時(shí),可得3-(3-x)=1,不成立;
綜上x(chóng)∈[0,1]∪[2,3].
故答案為:[0,1]∪[2,3].
點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,考查分類討論以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{15}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | BD⊥CE | |
B. | △CEF的面積為定值 | |
C. | 四面體BCEF的體積隨EF的位置的變化而變化 | |
D. | 直線BE與CF為異面直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{7}$ | B. | -$\sqrt{7}$ | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com