17.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,t),且$\overrightarrow{a}∥\overrightarrow$,則實數(shù)t=4.

分析 由兩個向量平行的條件得出t的方程,求解即可.

解答 解:因為$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,t),且$\overrightarrow{a}∥\overrightarrow$,
由兩個向量平行的條件得t-4=0,故t=4
故答案為:4.

點評 本題考查兩個向量坐標形式的平行的條件,屬基本運算的考查.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓的兩個焦點坐標分別為F1(-1,0),F(xiàn)2(1,0),并且經過點M(1,$\frac{\sqrt{2}}{2}$).
(1)求橢圓的標準方程;
(2)如果直線y=x+m與這個橢圓交于兩個不同的點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知F1,F(xiàn)2是橢圓$Γ:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點,橢圓Γ的離心率$e=\frac{{\sqrt{2}}}{2}$,P(x0,y0)是Γ上異于左右頂點的任意一點,且△PF1F2的面積的最大值為1.
(Ⅰ)求橢圓Γ的方程;
(Ⅱ)直線l是橢圓在點P處的切線,過F2作PF2的垂線,交直線l相交于Q,求證:點Q落在一條定直線m上,并求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知△ABC的角A、B、C的對邊分別為a、b、c,其面積S=4$\sqrt{3}$,∠B=60°,且a2+c2=2b2;等差數(shù)列{an}中,且a1=a,公差d=b.數(shù)列{bn}的前n項和為Tn,且Tn-2bn+3=0,n∈N*
(1)求數(shù)列{an}、{bn的通項公式;
(2)設cn=$\left\{\begin{array}{l}{{a}_{n},n為奇數(shù)}\\{_{n},n為偶數(shù)}\end{array}\right.$,求數(shù)列{cn}的前2n+1項和P2n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知命題p:方程$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{4-k}$=1表示焦點在x軸上的橢圓,命題q:(k-1)x2+(k-3)y2=1表示雙曲線.若p∨q為真命題,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設數(shù)列{an}的前n項和是Sn,令${T_n}=\frac{{{S_1}+{S_2}+…+{S_n}}}{n}$,稱Tn為數(shù)列a1,a2,…,an的“理想數(shù)”,已知數(shù)列a1,a2,…,a502的“理想數(shù)”為2015,則數(shù)列6,a1,a2,…,a502的理想數(shù)為( 。
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若實數(shù)x,y滿足$\left\{\begin{array}{l}{2x+y≤8}\\{x+y≥a}\\{x≥0}\end{array}\right.$,且z=60x+20y的最大值為200,則a等于( 。
A.4B.6C.3D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)f(x)=x+$\sqrt{1-x}$的單調減區(qū)間為[$\frac{3}{4}$,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)$y=\frac{sinx}{tanx}$的定義域是{x|$x≠\frac{kπ}{2}$,k∈Z}.

查看答案和解析>>

同步練習冊答案