2.已知A、B、C三點不共線,且$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+2$\overrightarrow{AC}$,則$\frac{{S}_{△ABD}}{{S}_{△ACD}}$=( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.6D.$\frac{1}{6}$

分析 根據(jù)題意,畫出圖形,結(jié)合圖形,不妨設(shè)$\overrightarrow{AC}$⊥$\overrightarrow{AB}$,求出S△ABD與S△ACD的表達式,再計算$\frac{{S}_{△ABD}}{{S}_{△ACD}}$的值.

解答 解:畫出圖形,如圖所示;
不妨設(shè)$\overrightarrow{AC}$⊥$\overrightarrow{AB}$,
$\overrightarrow{AE}$=-$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{AF}$=2$\overrightarrow{AC}$
∴$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+2$\overrightarrow{AC}$=$\overrightarrow{AE}$+$\overrightarrow{AF}$;
S△ABD=$\frac{1}{2}$|$\overrightarrow{AB}$|×|$\overrightarrow{AF}$|,
S△ACD=$\frac{1}{2}$|$\overrightarrow{AC}$|×|$\overrightarrow{DF}$|;
∴$\frac{{S}_{△ABD}}{{S}_{△ACD}}$=$\frac{\frac{1}{2}|\overrightarrow{AB}|×|\overrightarrow{AF}|}{\frac{1}{2}|\overrightarrow{AC}|×|\overrightarrow{DF}|}$=6.
故選:C.

點評 本題考查了平面向量的線性表示與運算問題,也考查了數(shù)形結(jié)合的解題思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知某三棱錐的三視圖如圖所示,則該三棱錐的體積為8,最長棱的棱長為2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.直線y=x-4與拋物線y2=2x交于A,B兩點,過A,B兩點向拋物線的準線l作垂線,垂足分別為P,Q,則梯形APQB的面積為33.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x,y∈[0,2],對于任意的m,n∈{1,2,3},不等式$\sqrt{{x}^{2}+{y}^{2}}$>|m-n|恒成立的概率為(  )
A.$\frac{1}{4}$B.1-$\frac{π}{4}$C.$\frac{π}{4}$D.$\frac{π}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)y=f(x)的定義域為[0,+∞),且對于任意x1,x2∈[0,+∞),存在正實數(shù)L,使得|f(x1)-f(x2)|≤L|x1-x2|均成立.
(1)若f(x)=$\sqrt{1+x}$,x∈[0,+∞),求實數(shù)L的取值范圍;
(2)當(dāng)0<L<1時,正項數(shù)列{an}滿足an+1=f(an),(n=1,2,…)
①求證:$\sum_{k=1}^{n}$|ak-ak+1|≤$\frac{1}{1-L}$•|a1-a2|;
②如果令A(yù)k=$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{k}$(k=1,2,3,…),
求證:$\sum_{k=1}^{n}$|Ak-Ak+1|≤$\frac{1}{1-L}$•|a1-a2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的公差不為零,a1=25,且a${\;}_{11}^{2}$=a1•a13,求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{bn}是等比數(shù)列.
(1)若b1=25,q=$\frac{1}{5}$,求bn;
(2)若b3=3,b6=24,求q,b10
(3)若b7=-$\frac{1}{8}$,b2=-4,求b1,bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知△ABC中,$\frac{{a}^{3}+^{3}-{c}^{3}}{a+b-c}$=c2,且acosB=bcosA.試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}各項均不相等,an+1=pan+qan-1(n≥2).
(1)當(dāng)p=3,q=-2時,求證:數(shù)列{an-an-1}為等比數(shù)列;
(2)試問p,q滿足什么條件時{an-an-1}為等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案