16.已知函數(shù)f(x)=x3-2f′(1)x-4,求f′(1)的值.

分析 根據(jù)導數(shù)的運算法則求導,再代入值計算即可.

解答 解:∵f(x)=x3-2f′(1)x-4,
∴f′(x)=3x2-2f′(1),
∴f′(1)=3-2f′(1),
∴f′(1)=1.

點評 本題考查了導數(shù)的運算法則,關(guān)鍵是掌握f′(1)是一個常數(shù),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1({a>b>0})的一個焦點為F(2,0),離心率為 $\frac{{\sqrt{6}}}{3}$.過焦點F 的直線l 與橢圓C交于 A,B兩點,線段 AB中點為D,O為坐標原點,過O,D的直線交橢圓于M,N 兩點.
(1)求橢圓C 的方程;
(2)求四邊形AMBN 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在正方體ABCD-A′B′C′D′中,棱AB、BB′、B′C′、C′D′的中點分別是E,F(xiàn),G,H,如圖所示,則下列說法中正確的有( 。
①點A,D′,H,F(xiàn)共面;
②直線EG與直線HF是異面直線;
③A′C⊥平面EFG;
④D′G∥平面A′DF.
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\frac{lnx}{x}$,有下列四個命題:
p1:?x0∈R+,?x∈R+,f($\frac{{x}_{0}+x}{2}$)>$\frac{f({x}_{0})+f(x)}{2}$
p2:?x0∈R+,?x∈R+,f($\frac{{x}_{0}+x}{2}$)<$\frac{f({x}_{0})+f(x)}{2}$
p3:?x0∈R+,?x∈R+,f′(x0)<$\frac{f({x}_{0}+x)-f({x}_{0})}{x}$
p4:?x0∈R+,?x∈R+,f′(x0)>$\frac{f({x}_{0}+x)-f({x}_{0})}{x}$
其中的真命題是( 。
A.p1,p2B.p1,p4C.p2,p3D.p2,p4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設(shè)函數(shù)f(x)=-$\frac{1}{3}{x^3}+2a{x^2}-3{a^2}$x+1,0<a<1.
(1)求函數(shù)f(x)的極大值;
(2)若x∈[1-a,1+a]時,恒有-a≤f′(x)≤a成立(其中f′(x)是函數(shù)f(x)的導函數(shù)),試確定實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在△ABC中,b=asinC,c=acosB,則△ABC的形狀是等腰直角三角形..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設(shè)D、E分別是△ABC的邊AB,BC上的點,AD=$\frac{1}{3}AB$,BE=$\frac{2}{3}$BC,若$\overrightarrow{DE}$=λ1$\overrightarrow{AB}$+λ2$\overrightarrow{AC}$(λ1,λ2為實數(shù))則λ12的值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)在[-1,t]上的最小值為N(t),最大值為M(t),若存在最小正整數(shù)k,使得M(t)-N(t)≤k(t+1)對任意t∈(-1,b]成立,則稱函數(shù)f(x)為區(qū)間(-1,b]上的“k階δ函數(shù)”.若函數(shù)f(x)=x2為區(qū)間(-1,4]上的“k階δ函數(shù)”,則k的值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知公差不為0的等差數(shù)列{an}中,a1+a2+a3+a4=20,a1,a2,a4成等比數(shù)列,求集合A={x|x=an,n∈N*且100<x<200}的元素個數(shù)及所有這些元素的和.

查看答案和解析>>

同步練習冊答案