【題目】設(shè),函數(shù).
(1)若,求曲線在處的切線方程;
(2)若無零點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1) ;(2) .
【解析】
試題分析:(1)求函數(shù)的導(dǎo)數(shù)得,當(dāng)時(shí),,由點(diǎn)斜式寫出切線方程即可;(2)當(dāng)時(shí),由可知函數(shù)有零點(diǎn),不符合題意;當(dāng)時(shí),函數(shù)有唯一零點(diǎn)有唯一零點(diǎn),不符合題意;當(dāng)時(shí),由單調(diào)性可知函數(shù)有最大值,由函數(shù)的最大值小于零列出不等式,解之即可.
試題解析: (1)區(qū)間上,,
當(dāng)時(shí),,則切線方程為,即.
(2)①若時(shí),則,是區(qū)間上的增函數(shù),
∵,,
∴,函數(shù)在區(qū)間有唯一零點(diǎn);
②若,有唯一零點(diǎn);
③若,令,得,
在區(qū)間上,,函數(shù)是增函數(shù);
在區(qū)間上,,函數(shù)是減函數(shù);
故在區(qū)間上,的極大值為,
由于無零點(diǎn),須使,解得,
故所求實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),給出下列結(jié)論:
(1)若對(duì)任意,且,都有,則為R上的減函數(shù);
(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);
(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);
(4)t為常數(shù),若對(duì)任意的,都有則關(guān)于對(duì)稱。
其中所有正確的結(jié)論序號(hào)為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過曲線C1:-=1(a>0,b>0)的左焦點(diǎn)F1作曲線C2:x2+y2=a2的切線,設(shè)切點(diǎn)為M,直線F1M交曲線C3:y2=2px(p>0)于點(diǎn)N,其中曲線C1與C3有一個(gè)共同的焦點(diǎn),若|MF1|=|MN|,則曲線C1的離心率為( )
A. B. -1 C. +1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】化為推出一款6寸大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如下:
女性用戶:
分值區(qū)間 | |||||
頻數(shù) | 20 | 40 | 80 | 50 | 10 |
分值區(qū)間 | |||||
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
男性用戶:
(1)如果評(píng)分不低于70分,就表示該用戶對(duì)手機(jī)“認(rèn)可”,否則就表示“不認(rèn)可”,完成下列列聯(lián)表,并回答是否有的把握認(rèn)為性別對(duì)手機(jī)的“認(rèn)可”有關(guān):
女性用戶 | 男性用戶 | 合計(jì) | |
“認(rèn)可”手機(jī) | |||
“不認(rèn)可”手機(jī) | |||
合計(jì) |
附:
0.05 | 0.01 | |
3.841 | 6635 |
(2)根據(jù)評(píng)分的不同,運(yùn)用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評(píng)分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評(píng)分小于90分的人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】沭陽縣某水果店銷售某種水果,經(jīng)市場(chǎng)調(diào)查,該水果每日的銷售量(單位:千克)與銷售價(jià)格近似滿足關(guān)系式,其中為常數(shù),已知銷售價(jià)格定為元千克時(shí),每日可銷售出該水果千克.
(1)求實(shí)數(shù)的值;
(2)若該水果的成本價(jià)格為元千克,要使得該水果店每日銷售該水果獲得最大利潤,請(qǐng)你確定銷售價(jià)格的值,并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求的最小值;
(2)記的最小值為,已知函數(shù),若對(duì)于任意的,恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓+=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,拋物線y2= (a+c)x與橢圓交于B,C兩點(diǎn),若四邊形ABFC是菱形,則橢圓的離心率等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln x++ax(a是實(shí)數(shù)),g(x)=+1.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)在定義域上的最值;
(2)若函數(shù)f(x)在[1,+∞)上是單調(diào)函數(shù),求a的取值范圍;
(3)是否存在正實(shí)數(shù)a滿足:對(duì)于任意x1∈[1,2],總存在x2∈[1,2],使得f(x1)=g(x2)成立? 若存在,求出a的取值范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC=BC=1,E是PC的中點(diǎn),平面PAC⊥平面ABCD.
(1)證明:ED∥平面PAB;
(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com