2.某三棱錐的三視圖如圖所示,該三棱錐的體積是32;

分析 根據(jù)幾何體的三視圖,得三棱錐的底面邊長與對應(yīng)的高,求出它的體積.

解答 解:根據(jù)幾何體的三視圖,得;
該幾何體是底面邊長為8,該邊上的高為6的三棱錐,
且三棱錐的高為4;
∴該三棱錐的體積為
V三棱錐=$\frac{1}{3}$×$\frac{1}{2}×$8×6×4=32.
故答案為:32.

點(diǎn)評 本題考查了空間幾何體的三視圖的應(yīng)用問題,解題時應(yīng)根據(jù)三視圖得出幾何體的結(jié)構(gòu)特征,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),過右焦點(diǎn)F且不與x軸垂直的直線l交橢圓于A,B兩點(diǎn),AB的垂直平分線交x軸于點(diǎn)N,求$\frac{NF}{AB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在等比數(shù)列{an}中,a1=1,a3,a2+a4,a5成等差數(shù)列.
(1)求數(shù)列{an}的通項公式
(2)若數(shù)列{bn}滿足b1+$\frac{_{2}}{2}$+…+$\frac{_{n}}{n}={a}_{n}$(n∈N+),{bn}的前n項和為Sn,求證Sn≤n•an(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知某市兩次數(shù)學(xué)測試的成績ξ1和ξ2分別服從正態(tài)分布ξ1:N1(90,86)和ξ2:N2(93,79),則以下結(jié)論正確的是(  )
A.第一次測試的平均分比第二次測試的平均分要高,也比第二次成績穩(wěn)定
B.第一次測試的平均分比第二次測試的平均分要高,但不如第二次成績穩(wěn)定
C.第二次測試的平均分比第一次測試的平均分要高,也比第一次成績穩(wěn)定
D.第二次測試的平均分比第一次測試的平均分要高,但不如第一次成績穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.高三(3)班共有學(xué)生56人,座號分別為1,2,3,…,56,現(xiàn)根據(jù)座號,用系統(tǒng)抽樣的方法,抽取一個容量為4的樣本.已知3號、17號、45號同學(xué)在樣本中,那么樣本中還有一個同學(xué)的座號是( 。
A.30B.31C.32D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知拋物線C1:y2=2px(p>0)的焦點(diǎn)為F,拋物線上存在一點(diǎn)G到焦點(diǎn)的距離為3,且點(diǎn)G在圓C:x2+y2=9上.
(Ⅰ)求拋物線C1的方程;
(Ⅱ)已知橢圓C2:$\frac{x^2}{m^2}+\frac{y^2}{n^2}$=1(m>n>0)的一個焦點(diǎn)與拋物線C1的焦點(diǎn)重合,若橢圓C2上存在關(guān)于直線l:y=$\frac{1}{4}x+\frac{1}{3}$對稱的兩個不同的點(diǎn),求橢圓C2的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)為F,過F作斜率為-1的直線交雙曲線的漸近線于點(diǎn)P,點(diǎn)P在第一象限,O為坐標(biāo)原點(diǎn),若△OFP的面積為$\frac{{{a^2}+{b^2}}}{8}$,則該雙曲線的離心率為$\frac{\sqrt{10}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知acosC+ccosA=2bcosA.
(1)求角A的值;
(2)求sinB+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知實(shí)數(shù)x,y滿足條件 $\left\{\begin{array}{l}x≥0\\ 4x+3y≤4\\ y≥0\end{array}$,則 z=$\frac{x+y+1}{x}$最小值為2.

查看答案和解析>>

同步練習(xí)冊答案