m的范圍 | |||
方程f(x)=0的解得個數(shù) | 1 | 2 | 3 |
分析 (1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,得到函數(shù)的單調區(qū)間即可;
(2)由f(x)=0,得:m=-x2+3x-lnx,令g(x)=-x2+3x-lnx,求出g(x)的極值,從而求出m的范圍.
解答 解:(1)函數(shù)f(x)的定義域是(0,+∞),
f′(x)=2x-3+$\frac{1}{x}$=$\frac{{2x}^{2}-3x+1}{x}$=$\frac{(2x-1)(x-1)}{x}$,
令f′(x)>0,解得:x>1或x<$\frac{1}{2}$,
令f′(x)<0,解得:$\frac{1}{2}$<x<1,
∴f(x)在(0,$\frac{1}{2}$),(1,+∞)遞增,在($\frac{1}{2}$,1)遞減;
(2)令f(x)=0,得:m=-x2+3x-lnx,
令g(x)=-x2+3x-lnx,g′(x)=-2x+3-$\frac{1}{x}$=$\frac{(-2x+1)(x-1)}{x}$,
令g′(x)>0,解得:$\frac{1}{2}$<x<1,令g′(x)<0,解得:x>1或x<$\frac{1}{2}$,
∴g(x)在(0,$\frac{1}{2}$)遞減,在($\frac{1}{2}$,1)遞增,在(1,+∞)遞減,
∴g(x)極小值=g($\frac{1}{2}$)=$\frac{5}{4}$+ln2,g(x)極大值=g(1)=2,
∴方程f(x)=0有1個解時,m>2或m<$\frac{5}{4}$+ln2,
方程f(x)=0有2個解時,m=2或m=$\frac{5}{4}$+ln2,
方程f(x)=0有3個解時,$\frac{5}{4}$+ln2<m<2.
點評 本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,2$\sqrt{2}$] | B. | (-∞,2$\sqrt{2}$) | C. | (-∞,3) | D. | (-∞,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com