20.函數(shù)y=x2-5x+6(-3≤x≤2)的值域是[0,30].

分析 由二次函數(shù)的圖象和性質(zhì)可得當(dāng)-3≤x≤2時(shí),函數(shù)為減函數(shù),求出函數(shù)的最值后,可得函數(shù)的值域.

解答 解:函數(shù)y=x2-5x+6的圖象是開口朝上,且以直線x=$\frac{5}{2}$為對稱軸的拋物線,
故當(dāng)-3≤x≤2時(shí),函數(shù)為減函數(shù),
故當(dāng)x=-3時(shí),函數(shù)取最大值30,
當(dāng)x=2時(shí),函數(shù)取最小值0,
故函數(shù)y=x2-5x+6(-3≤x≤2)的值域是[0,30],
故答案為:[0,30]

點(diǎn)評 本題考查的知識點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=2sin($\frac{1}{2}$x+$\frac{4φ}{3}$)(φ∈($\frac{π}{2}$,π)的圖象向左平移$\frac{2π}{3}$個單位長度得到函數(shù)g(x)的圖象,且函數(shù)g(x)是偶函數(shù),則φ的值為$\frac{7π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若直線l:ax+y-2-a=0在x軸和y軸上的截距相等,則直線l的斜率為( 。
A.1B.-1C.-2或1D.-1或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)|$\overrightarrow{a}$|=4,|$\overrightarrow$|=3,$\overrightarrow{a}$•$\overrightarrow$=-6$\sqrt{2}$.求:
(1)<$\overrightarrow{a}$,$\overrightarrow$>;
(2)(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+2$\overrightarrow$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x2-3x+m+1nx(m∈R)
(1)求f(x)的單調(diào)增區(qū)間與減區(qū)間;
(2)填表(不要求過程,只填結(jié)果即可)
m的范圍   
方程f(x)=0的解得個數(shù)123

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)y=f(x)的定義域?yàn)镽+,且f(xy)=f(x)+f(y),f(8)=3,則f(2$\sqrt{2}$)等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知sin2α=$\frac{5}{13}$,$\frac{π}{4}$<α<$\frac{π}{2}$,求sin4α,cos4α,tan4α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左頂點(diǎn)為A,左焦點(diǎn)為F1(-2,0),點(diǎn)B(2,$\sqrt{2}$)在橢圓C上,直線y=kx(k≠0)與橢圓C交于E,F(xiàn)兩點(diǎn),直線AE,AF分別與y軸交于點(diǎn)M,N;
(1)求橢圓C的方程;
(2)以MN為直徑的圓是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo),若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.與α終邊關(guān)于x軸對稱的角的集合為{β|β=-α+2kπ,k∈Z}.

查看答案和解析>>

同步練習(xí)冊答案