12.函數(shù)$f(x)=\sqrt{1-{{log}_2}(x-1)}$的定義域?yàn)椋ā 。?table class="qanwser">A.(1,3]B.(-∞,3]C.(0,3]D.(1,3)

分析 根據(jù)對數(shù)函數(shù)的性質(zhì)得到0<x-1≤2,解出即可.

解答 解:由1-log2(x-1)≥0,即log2(x-1)≤1,
解得0<x-1≤2,即1<x≤3,
所以函數(shù)的定義域?yàn)椋?,3].
故選:A.

點(diǎn)評 本題考查了函數(shù)的定義域、對數(shù)函數(shù)的圖象與性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.斜三棱柱ABC-A1B1C1的兩底面為等腰三角形,直角邊AB=AC=6,BC1⊥AC,BC1=2$\sqrt{6}$,側(cè)棱CC1與平面ABC1成60°角.
(1)求證:平面ABC⊥平面ABC1;
(2)求BC與平面AA1C1C所成的角;
(3)求這個三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,已知∠DEC=80°,弧CD的度數(shù)與弧AB的度數(shù)的差為20°,則∠DAC的度數(shù)為( 。
A.35°B.45°C.55°D.70°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知△ABC中,AB=AC,D是△ABC外接圓劣弧$\widehat{AC}$上的點(diǎn)(不與點(diǎn)A,C重合),延長BD至E.
(1)求證:AD的延長線平分∠CDE;
(2)若∠BAC=30°,△ABC中BC邊上的高為1+$\frac{\sqrt{3}}{2}$,求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.南山中學(xué)近幾年規(guī)模不斷壯大,學(xué)生住宿異常緊張,學(xué)校擬用1000萬元購一塊空地,計(jì)劃在該空地上建造一棟至少8層,每層2000平方米的學(xué)生電梯公寓.經(jīng)測算,如果將公寓建為x(x≥8)層,則每平方米的平均建筑費(fèi)用為560+48x(單位:元).
(1)寫出擬修公寓每平米的平均綜合費(fèi)用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;
(2)該公寓應(yīng)建造多少層時(shí),可使公寓每平方米的平均綜合費(fèi)用最少?最少值是多少?(結(jié)果精確到1元)
(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購地費(fèi)用,平均購地費(fèi)用=$\frac{購地總費(fèi)用}{建筑總面積}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在正三棱柱ABC-A1B1C1中,側(cè)棱與底面的邊長都是2,D是AC的中點(diǎn).
(1)求證:BD⊥A1D;
(2)求直線BA1與平面AA1C1C所成角的余弦值;
(3)求三棱錐A1-ABD的體積;
(4)求三角形A1BD的面積,并求出點(diǎn)A到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在正三棱錐P-ABC中,AB=6,PA=5.
(1)求此三棱錐的體積V;
(2)求二面角P-AB-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,AA1B1B是圓柱的軸截面,C是底面圓周上異于A,B的一點(diǎn),AA1=AB=2.
(1)求證:平面AA1C⊥平面BA1C.
(2)求幾何體A1-ABC的體積V的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,⊙O為△ABC的外接圓,且AB=AC,過點(diǎn)A的直線交⊙O于D,交BC的延長線于F,DE是BD的延長線,連接CD.
(1)求證:∠EDF=∠CDF;
(2)求證:AB2=AF•AD.

查看答案和解析>>

同步練習(xí)冊答案