17.如圖,在正三棱柱ABC-A1B1C1中,側(cè)棱與底面的邊長(zhǎng)都是2,D是AC的中點(diǎn).
(1)求證:BD⊥A1D;
(2)求直線BA1與平面AA1C1C所成角的余弦值;
(3)求三棱錐A1-ABD的體積;
(4)求三角形A1BD的面積,并求出點(diǎn)A到平面A1BD的距離.

分析 (1)在正三棱柱ABC-A1B1C1中,D是AC的中點(diǎn).可得BD⊥AC,AA1⊥底面ABC,于是AA1⊥BD,BD⊥平面ACC1A1,即可證明.
(2)如圖所示,建立空間直角坐標(biāo)系.取平面AA1C1C的法向量為$\overrightarrow{m}$=(1,0,0).設(shè)直線BA1與平面AA1C1C所成角為θ.利用sinθ=$|cos<\overrightarrow{{A}_{1}B},\overrightarrow{m}>|$=$\frac{|\overrightarrow{{A}_{1}B}•\overrightarrow{m}|}{|\overrightarrow{{A}_{1}B}||\overrightarrow{m}|}$,即可得出.
(3)由已知可得:點(diǎn)A1到平面ABC的距離d=AA1=2.利用${V}_{{A}_{1}-ABD}$=$\frac{1}{3}d•{S}_{△ABD}$,即可得出.
(4)設(shè)點(diǎn)A到平面A1BD的距離為h.利用${V}_{A-{A}_{1}BD}$=${V}_{{A}_{1}-ABD}$,即可得出.

解答 (1)證明:在正三棱柱ABC-A1B1C1中,D是AC的中點(diǎn).
∴BD⊥AC,AA1⊥底面ABC,
∴AA1⊥BD,
又AC∩AA1=A,
∴BD⊥平面ACC1A1,
∴BD⊥A1D.
(2)解:如圖所示,建立空間直角坐標(biāo)系.
B($\sqrt{3}$,0,0),A1(0,1,2).
$\overrightarrow{{A}_{1}B}$=$(\sqrt{3},-1,-2)$,取平面AA1C1C的法向量為$\overrightarrow{m}$=(1,0,0).
設(shè)直線BA1與平面AA1C1C所成角為θ.
則sinθ=$|cos<\overrightarrow{{A}_{1}B},\overrightarrow{m}>|$=$\frac{|\overrightarrow{{A}_{1}B}•\overrightarrow{m}|}{|\overrightarrow{{A}_{1}B}||\overrightarrow{m}|}$=$\frac{\sqrt{3}}{\sqrt{8}}$=$\frac{\sqrt{6}}{4}$.
∴cosθ=$\sqrt{1-si{n}^{2}θ}$=$\frac{\sqrt{10}}{4}$.
(3)解:∵AA1⊥底面ABC,∴點(diǎn)A1到平面ABC的距離d=AA1=2.
又S△ABD=$\frac{1}{2}BD•AD$=$\frac{1}{2}×\sqrt{3}×1$=$\frac{\sqrt{3}}{2}$.
∴${V}_{{A}_{1}-ABD}$=$\frac{1}{3}d•{S}_{△ABD}$=$\frac{1}{3}×2×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{3}$.
(4)解:在Rt△ADA1,A1D=$\sqrt{A{A}_{1}^{2}+A{D}^{2}}$=$\sqrt{5}$.
由(1)可知:BD⊥A1D.
∴${S}_{△{A}_{1}BD}$=$\frac{1}{2}BD•{A}_{1}D$=$\frac{1}{2}×\sqrt{3}×\sqrt{5}$=$\frac{\sqrt{35}}{2}$.
設(shè)點(diǎn)A到平面A1BD的距離為h.
則${V}_{A-{A}_{1}BD}$=${V}_{{A}_{1}-ABD}$
∴$\frac{1}{3}•h•{S}_{△{A}_{1}BD}$=$\frac{\sqrt{3}}{3}$,
∴h=$\frac{\sqrt{3}}{\frac{\sqrt{35}}{2}}$=$\frac{2\sqrt{105}}{35}$.

點(diǎn)評(píng) 本題考查了空間位置關(guān)系、空間角、體積計(jì)算,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知:如圖,點(diǎn)I是△ABC的內(nèi)心,延長(zhǎng)AI交△ABC的外接圓于點(diǎn)D,求證:點(diǎn)D是△BCI的外心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知直線y=kx+2與曲線$f(x)=|{x+\frac{1}{x}}|-|{x-\frac{1}{x}}|$恰有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)k的取值構(gòu)成集合是$\{0,\frac{1}{2},-\frac{1}{2}\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在平面直角坐標(biāo)系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長(zhǎng)軸長(zhǎng)為6,點(diǎn)A為左頂點(diǎn),B,C在橢圓E上,若四邊形OABC位平行四邊形,且∠OAB=30°.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過(guò)點(diǎn)M(1,0)作傾斜角為135°的直線l,交橢圓于P,Q兩點(diǎn),設(shè)點(diǎn)F是橢圓的左焦點(diǎn),求△FPQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)$f(x)=\sqrt{1-{{log}_2}(x-1)}$的定義域?yàn)椋ā 。?table class="qanwser">A.(1,3]B.(-∞,3]C.(0,3]D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側(cè)棱AA1⊥平面ABC,D為棱A1B1的中點(diǎn),E為AA1的中點(diǎn),點(diǎn)F在棱AB上,且AF=$\frac{1}{4}$AB.
(1)求證:EF∥平面BC1D;
(2)求VD-EBC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且∠F1PF2=$\frac{π}{3}$,記橢圓和雙曲線的離心率分別為e1,e2,則$\frac{1}{{e}_{1}{e}_{2}}$的最大值為( 。
A.3B.$\frac{4\sqrt{3}}{3}$C.2D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,已知Rt△ABC的兩條直角邊AC,BC的長(zhǎng)分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,求$\frac{BD}{DA}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若一個(gè)圓錐的側(cè)面展開(kāi)圖恰好是一個(gè)半圓,則這個(gè)圓錐的側(cè)面積與表面積之比為2:3.

查看答案和解析>>

同步練習(xí)冊(cè)答案