17.函數(shù)f(x)=$\frac{{\sqrt{4-{x^2}}}}{{{{log}_2}x-1}}$的定義域為(0,2).

分析 根據(jù)函數(shù)成立的條件即可求函數(shù)的定義域.

解答 解:要使函數(shù)有意義,則$\left\{\begin{array}{l}{4-{x}^{2}≥0}\\{lo{g}_{2}x-1≠0}\\{x>0}\end{array}\right.$.
即$\left\{\begin{array}{l}{-2≤x≤2}\\{x≠2}\\{x>0}\end{array}\right.$,即0<x<2,
即函數(shù)的定義域為(0,2),
故答案為:(0,2).

點評 本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見函數(shù)成立的條件.比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=x2-ax的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,記數(shù)列$\{\frac{1}{f(n)}\}$的前n項和為Sn,則S2016的值為( 。
A.$\frac{2015}{2016}$B.$\frac{2016}{2017}$C.$\frac{2014}{2015}$D.$\frac{2017}{2018}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知E,F(xiàn)為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(0<a<b)的左右焦點,拋物線y2=2px(p>0)與雙曲線有公共的焦點F,且與雙曲線交于A,B不同兩地兩點,若|AF|=$\frac{4}{5}$|BE|,則雙曲線的離心率為( 。
A.4-$\sqrt{7}$B.4-$\sqrt{3}$C.4+$\sqrt{3}$D.4+$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知{an}為等差數(shù)列,3a4+a8=36,則{an}的前9項和S9=(  )
A.9B.17C.36D.81

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.化簡(1+$\sqrt{x}$)5+(1-$\sqrt{x}$)5按x升冪排列為2+20x+10x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列函數(shù)中既是奇函數(shù),又在區(qū)間(0,+∞)上是單調(diào)遞減的函數(shù)為( 。
A.y=$\sqrt{x}$B.y=-x3C.y=${log_{\frac{1}{2}}}$xD.y=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)y=f(x)圖象上不同兩點A(x1,y1),B(x2,y2)處的切線的斜率分別是kA,kB,規(guī)定K(A,B)=$\frac{{|{k_A}-{k_B}|}}{|AB|}$(|AB|為線段AB的長度)叫做曲線y=f(x)在點A與點B之間的“近似曲率”.設(shè)曲線y=$\frac{1}{x}$上兩點A(a,$\frac{1}{a}$),B($\frac{1}{a}$,a)(a>0且a≠1),若m•K(A,B)>1恒成立,則實數(shù)m的取值范圍是[$\frac{\sqrt{2}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在△ABC中,“A=B”是“sinAcosA=sinBcosB”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設(shè)數(shù)列{an}的前n項和為Sn,且a1=$\frac{1}{2}$,{Sn+nan}為常數(shù)列,則an=( 。
A.$\frac{1}{n(n+1)}$B.$\frac{1}{{2}^{n}}$C.$\frac{3}{(n+1)(n+2)}$D.$\frac{5-2n}{6}$

查看答案和解析>>

同步練習冊答案