A. | $\sqrt{10}$ | B. | 5 | C. | 3 | D. | $\sqrt{11}$ |
分析 由題意可得三角形的面積,利用余弦定理,代入已知數(shù)據(jù)可求出AC+BC的值.
解答 解:由題意可知三角形的面積為S=$\frac{1}{2}×\sqrt{3}×\frac{4}{3}$=$\frac{2\sqrt{3}}{3}$=$\frac{1}{2}$AC•BCsin60°,
∴AC•BC=$\frac{8}{3}$.由余弦定理AB2=AC2+BC2-2AC•BCcos60°=(AC+BC)2-3AC•BC,
∴(AC+BC)2-3AC•BC=3,
∴(AC+BC)2=11.
∴AC+BC=$\sqrt{11}$
故選:D
點評 本題考查解三角形,三角形的面積與余弦定理的應(yīng)用,整體法是解決問題的關(guān)鍵,屬中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
品牌 | 甲 | 乙 | |||
首次出現(xiàn)故障時間x(年) | 0<x≤1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
數(shù)量(件) | 2 | 3 | 45 | 5 | 45 |
每件利潤(百元) | 1 | 2 | 3 | 1.8 | 2.9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ③④ | C. | ①④ | D. | ①③ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com