18.某家電產(chǎn)品受在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每件的利潤(rùn)與該產(chǎn)品首次出現(xiàn)故障的時(shí)間有關(guān).某廠家生產(chǎn)甲、乙兩種品牌,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌家電中各隨機(jī)抽取50件,統(tǒng)計(jì)數(shù)據(jù)如下:
品牌
首次出現(xiàn)故障時(shí)間x(年)0<x≤11<x≤2x>20<x≤2x>2
數(shù)量(件)2345545
每件利潤(rùn)(百元)1231.82.9
將頻率視為概率,解答下列問題:
(Ⅰ)從該廠生產(chǎn)的甲、乙品牌產(chǎn)品中隨機(jī)各抽取一件,求其至少有一件首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(Ⅱ)若該廠生產(chǎn)的家電均能售出,記生產(chǎn)一件甲品牌的利潤(rùn)為X1,生產(chǎn)一件乙品牌家電的利潤(rùn)為X2,分別求X1,X2的分布列;
(Ⅲ)該廠預(yù)計(jì)今后這兩種品牌家電銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的家電.若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的家電?說(shuō)明理由.

分析 (Ⅰ)根據(jù)概率公式進(jìn)行求解即可;
(Ⅱ)方便求出甲乙領(lǐng)館品牌的分布列即可;
(Ⅲ)根據(jù)均值進(jìn)行比較即可得到結(jié)論.

解答 解:(I)設(shè)“甲、乙品牌家電至少有一件首次出現(xiàn)故障發(fā)生在保修期內(nèi)”為事件A,
則P(A)=1-$\frac{45}{50}×\frac{45}{50}$=$\frac{19}{100}$----(4分)
(II)依題意得,X1的分布列為

X1123
P$\frac{1}{25}$$\frac{3}{50}$$\frac{9}{10}$
X2的分布列為
X21.82.9
P$\frac{1}{10}$$\frac{9}{10}$
--------------(8分)
(III)由(II)得E(X1)=1×$\frac{1}{25}$+2×$\frac{3}{50}$+3×$\frac{9}{10}$=$\frac{143}{50}$=2.86(百元),
E(X2)=1.8×$\frac{1}{10}$+2.9×$\frac{9}{10}$=2.79(百元).-----------(12分)
因?yàn)镋(X1)>E(X2),所以應(yīng)生產(chǎn)甲品牌家電.

點(diǎn)評(píng) 本題主要考查概率的計(jì)算,以及隨機(jī)變量的分布列以及均值的計(jì)算,考查學(xué)生的計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某校在高三第一次模擬考試中約有1000人參加考試,其數(shù)學(xué)考試成績(jī)近似服從正態(tài)分布,即X~N(100,a2)(a>0),試卷滿分150分,統(tǒng)計(jì)結(jié)果顯示數(shù)學(xué)考試成績(jī)不及格(低于90分)的人數(shù)占總?cè)藬?shù)的$\frac{1}{10}$,則此次數(shù)學(xué)考試成績(jī)?cè)?00分到110分之間的人數(shù)約為( 。
A.400B.500C.600D.800

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已數(shù)列{an}滿足a1=2,an=an-1+2(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知等邊三角形△ABC的邊長(zhǎng)為a,則$\overrightarrow{AB}•\overrightarrow{BC}$=(  )
A.$-\frac{1}{2}{a^2}$B.$-\frac{{\sqrt{3}}}{2}{a^2}$C.$\frac{1}{2}{a^2}$D.$\frac{{\sqrt{3}}}{2}{a^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在△ABC中,若a2-c2+b2+$\sqrt{2}$ab=0,則∠C=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{{4}^{x}+2}$(x∈R).
(1)若數(shù)列{an}的通項(xiàng)公式為an=f($\frac{n}{m}$)(m∈N+,n=1,2,…,m),求數(shù)列{an}的前m項(xiàng)和Sm
(2)設(shè)數(shù)列{bn}滿足:b1=$\frac{1}{3}$,bn+1=bn2+bn.設(shè)Tn=$\frac{1}{_{1}+1}$+$\frac{1}{_{2}+1}$+…+$\frac{1}{_{n}+1}$.若(1)中的Sn滿足對(duì)任意不小于2的正整數(shù)n,Sn<Tn恒成立,試求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在△ABC中,C=60°,AB=$\sqrt{3}$,AB邊上的高為$\frac{4}{3}$,則AC+BC等于(  )
A.$\sqrt{10}$B.5C.3D.$\sqrt{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,在四邊形ABCD中,AB⊥BC,AB=3,BC=4,△ACD是等邊三角形,則$\overrightarrow{AC}•\overrightarrow{BD}$的值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知數(shù)列{an}是正項(xiàng)等差數(shù)列,若cn=$\frac{{{a_1}+2{a_2}+3{a_3}+…+n{a_n}}}{1+2+3+…n}$,則數(shù)列{cn}也為等差數(shù)列.已知數(shù)列{bn}是正項(xiàng)等比數(shù)列,類比上述結(jié)論可得( 。
A.若{dn}滿足dn=$\frac{{{b_1}+2{b_2}+3{b_3}+…+n{b_n}}}{1+2+3+…n}$,則{dn}也是等比數(shù)列
B.若{dn}滿足dn=$\frac{{{b_1}•2{b_2}•3{b_3}•…•n{b_n}}}{1•2•3•…•n}$,則{dn}也是等比數(shù)列
C.若{dn}滿足${d_n}={[{b_1}•(2{b_2})•(3{b_3})•…•(n{b_n})]^{\frac{1}{1+2+…+n}}}$,則{dn}也是等比數(shù)列
D.若{dn}滿足${d_n}={[{b_1}•{b_2}^2•{b_3}^3•…•{b_n}^n]^{\frac{1}{1+2+…+n}}}$,則{dn}也是等比數(shù)列

查看答案和解析>>

同步練習(xí)冊(cè)答案