17.已知隨機變量X服從正態(tài)分布N(4,σ2),且P(2<X≤6)=0.98,則P(X<2)=0.01.

分析 隨機變量X服從正態(tài)分布N(4,σ2),根據(jù)對稱性,由P(2<X≤4)的概率可求出P(X<2).

解答 解:∵隨機變量X服從正態(tài)分布N(4,σ2),且P(2<X≤6)=0.98,
∴P(2<X≤4)=$\frac{1}{2}$P(2<X≤6)=0.49,
∴P(X<2)=0.5-P(2<X≤4)=0.5-0.49=0.01.
故答案為:0.01.

點評 本題主要考查正態(tài)分布曲線的特點及曲線所表示的意義,注意根據(jù)正態(tài)曲線的對稱性解決問題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.已知拋物線C1:x2=2y,雙曲線C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點為A,離心率為$\sqrt{5}$,若過點A且與C2的漸近線平行的直線恰好與C1相切,則雙曲線的標準方程為x2-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知隨機變量ξ服從正態(tài)分布N(3,σ2),P(ξ≤4)=0.842,則P(ξ≤2)=(  )
A.0.842B.0.158C.0.421D.0.316

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知a+2b=1且b>1,則$\frac{1}{a}$+$\frac{a}$的取值范圍( 。
A.(-2,1-2$\sqrt{2}$]B.(-∞,1-2$\sqrt{2}$]C.[1+2$\sqrt{2}$,+∞)D.[1+2$\sqrt{2}$,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知隨機變量ξ服從正態(tài)分布N(m,σ2),若P(ξ≤-3)=P(ξ≥4),則m=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.用一個不平行于底面的平面截一個底面直徑為6cm的圓柱,得到如圖幾何體,若截面橢圓的長軸長為10cm,這個幾何體最短的母線長為6cm,則此幾何體的體積為90πcm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知i2=-1,復數(shù)z=$\frac{1-i}{1+i}$,則|z|=(  )
A.1B.$\sqrt{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在矩形ABCD中,AB=2,AD=1,點P為矩形ABCD內(nèi)一點,則使得$\overrightarrow{AP}$•$\overrightarrow{AC}$≥1的概率為(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知AD是△ABC中∠A的角平分線,且cos2A+5cosA=2,△ADC與△ADB的面積之比為1:2
(1)求sin∠A的值;
(2)求sin∠ADC的值.

查看答案和解析>>

同步練習冊答案