8.已知集合M={x|-1≤x≤7},集合N={x|k+1≤x≤2k-1},若M∩N=∅,求k的取值范圍.

分析 由已知得$\left\{\begin{array}{l}{2k-1<-1}\\{k+1<2k-1}\end{array}\right.$或$\left\{\begin{array}{l}{k+1>7}\\{k+1<2k-1}\end{array}\right.$,由此能求出k的取值范圍.

解答 解:∵集合M={x|-1≤x≤7},集合N={x|k+1≤x≤2k-1},M∩N=∅,
∴$\left\{\begin{array}{l}{2k-1<-1}\\{k+1<2k-1}\end{array}\right.$或$\left\{\begin{array}{l}{k+1>7}\\{k+1<2k-1}\end{array}\right.$,
解得k>6.
∴k的取值范圍是(6,+∞).

點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集、不等式性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x},}&{0≤x≤1}\\{\frac{x}{a}+1,}&{-1≤x<0}\end{array}\right.$(a>0且a≠1).若f(x)的最大值與最小值之差為$\frac{3}{2}$,則a的取值為2或$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=AB=2,BC=4,E為線段AB上的動(dòng)點(diǎn)(異于A、B),EF∥AD交CD于點(diǎn)F,沿EF折疊使二面角A-EF-B為直二面角.
(I)在線段BC上是否存在點(diǎn)M,使DM∥面AEB?若存在,則求出BM的長(zhǎng);若不存在,則說明理由;
(Ⅱ)若直線AC與面DCF所成的角為θ,求sinθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.一個(gè)三棱錐的三視圖如圖所示,則該三棱錐的體積為(  )
A.$\frac{2\sqrt{5}}{3}$B.$\frac{4\sqrt{5}}{3}$C.4$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,若輸入的c的值為3,則輸出的結(jié)果是(  )
A.27B.9C.8D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.計(jì)算:$\sqrt{({lo{g}_{2}5)}^{2}-4lo{g}_{2}5+4}$+log2$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.對(duì)任意的x≥2,都有(x+a)|x+a|+(ax)|x|≤0,則a的最大值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=x+sinx的圖象在點(diǎn)O(0,0)處的切線方程是y=2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦點(diǎn)為F1、F2,過F2作垂直于x軸的直線交橢圓于P點(diǎn)(點(diǎn)P在x軸上方),連結(jié)PF1并延長(zhǎng)交橢圓于另一點(diǎn)Q.設(shè)$\overrightarrow{P{F_1}}=λ\overrightarrow{{F_1}Q}$(2≤λ≤$\frac{7}{3}$).
(1)若PF1=$\frac{6}{5}\sqrt{5}$,PF2=$\frac{4}{5}\sqrt{5}$,求橢圓的方程;
(2)求橢圓的離心率的范圍;
(3)當(dāng)離心率最大時(shí),過點(diǎn)P作直線l交橢圓于點(diǎn)R,設(shè)直線PQ的斜率為k1,直線RF1的斜率為k2,若k1=$\frac{3}{2}{k_2}$,求直線l的斜率k.

查看答案和解析>>

同步練習(xí)冊(cè)答案