17.如圖,已知A、B、C、D為拋物線E:x2=2py(p>0)上不同四點(diǎn),其中A、D關(guān)于y軸對(duì)稱(chēng),過(guò)點(diǎn)D作拋物線E的切線l和直線BC平行.
(Ⅰ)求證:AD平分∠CAB;
(Ⅱ)若p=2,點(diǎn)D到直線AB、AC距離和為$\sqrt{2}$|AD|,三角形ABC面積為128,求BC的直線方程.

分析 (1)A(-x0,y0),D(x0,y0)B(x1,y1),C(x2,y2),證明kAC+kAB=$\frac{{x}_{2}-{x}_{0}}{2p}$+$\frac{{x}_{1}-{x}_{0}}{2p}$=0,由此能推導(dǎo)出∠BAC的角平分線在直線AD上.
(2)設(shè)∠BAD=∠CAD=α,則m=n=|AD|sinα,α=$\frac{π}{4}$,由此能推導(dǎo)出直線BC的方程.

解答 (1)證明:設(shè)A(-x0,y0),D(x0,y0)B(x1,y1),C(x2,y2),
∵y′=$\frac{x}{p}$,∴kBC=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{{x}_{1}+{x}_{2}}{2p}$=$\frac{{x}_{0}}{p}$,∴x1+x2=2x0
kAC=$\frac{{x}_{2}-{x}_{0}}{2p}$.kAB=$\frac{{x}_{1}-{x}_{0}}{2p}$,
∴kAC+kAB=$\frac{{x}_{2}-{x}_{0}}{2p}$+$\frac{{x}_{1}-{x}_{0}}{2p}$=0,
所以直線AC和直線AB的傾斜角互補(bǔ),所以∠BAD=∠CAD,
∴∠BAC的角平分線在直線AD上(6分)
(2)解:∠BAD=∠CAD=α
則m=n=|AD|sinα,∴sinα=$\frac{\sqrt{2}}{2}$,∴α=$\frac{π}{4}$,
∴直線AC的方程:y-$\frac{{{x}_{0}}^{2}}{4}$=x+x0,即y=x+$\frac{{{x}_{0}}^{2}}{4}$+x0
把直線AC與拋物線方程x2=4y聯(lián)立的x2-4x-4x0-x02=0∴-x0x2=-4x0-x02∴x2=x0+4
同理可得x1=x0-4,
∵-x0<x0-4<x0,∴x0>2,
∴S△ABC=$\frac{1}{3}\sqrt{2}(4+2{x}_{0})•\sqrt{2}(2{x}_{0}-4)$=$4({{x}_{0}}^{2}-4)$=128,
∴x0=6(10分)
∴B(2,1),kBC=3,∴l(xiāng)BC:3x-y-5=0(12分)

點(diǎn)評(píng) 本題考查直線和圓錐曲線的位置關(guān)系,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若公差d≠0,a5=10,且成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{1}{{({a_n}-1)({a_n}+1)}}$,Tn=b1+b2+…+bn,求證:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某社區(qū)超市購(gòu)進(jìn)了A,B,C,D四種新產(chǎn)品,為了解新產(chǎn)品的銷(xiāo)售情況,該超市隨機(jī)調(diào)查了15位顧客(記為ai,i=1,2,3,…,15)購(gòu)買(mǎi)這四種新產(chǎn)品的情況,記錄如下(單位:件):


產(chǎn)
a1a2a3a4a5a6a7a8a9a10a11a12a13a14a15
A11111
B11111111
C1111111
D111111
(Ⅰ)若該超市每天的客流量約為300人次,一個(gè)月按30天計(jì)算,試估計(jì)產(chǎn)品A的月銷(xiāo)售量(單位:件);
(Ⅱ)為推廣新產(chǎn)品,超市向購(gòu)買(mǎi)兩種以上(含兩種)新產(chǎn)品的顧客贈(zèng)送2元電子紅包.現(xiàn)有甲、乙、丙三人在該超市購(gòu)物,記他們獲得的電子紅包的總金額為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(Ⅲ)若某顧客已選中產(chǎn)品B,為提高超市銷(xiāo)售業(yè)績(jī),應(yīng)該向其推薦哪種新產(chǎn)品?(結(jié)果不需要證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=lnx-a(a∈R)與函數(shù)F(x)=x+$\frac{2}{x}$的圖象沒(méi)有交點(diǎn).
(1)求a的取值范圍;
(2)若不等式xf(x)+e>2-a對(duì)于x>0的一切值恒成立,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),滿足(x-1)[xf′(x)-f(x)]>0,則下列關(guān)于f(x)的命題正確的是( 。
A.f(3)<f(-3)B.f(2)>f(-2)C.f(3)<f(2)D.2f(3)>3f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.巳知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),都有不等式f(x)+xf'(x)>0成立,若$a={4^{0.2}}f({{4^{0.2}}}),b=({{{log}_4}3})f({{{log}_4}3}),c=({{{log}_4}\frac{1}{16}})f({{{log}_4}\frac{1}{16}})$,則a,b,c的大小關(guān)系是c>a>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問(wèn),米幾何?”如圖是解決該問(wèn)題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為( 。
A.4.5B.6C.7.5D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知A={x|-4<x<1},B={x|x2-x-6<0},則A∪B等于( 。
A.(-3,1)B.(-2,1)C.(-4,2)D.(-4,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知等比數(shù)列{an}為遞增數(shù)列,Sn是其前n項(xiàng)和.若a1+a5=$\frac{17}{2}$,a2a4=4,則S6=( 。
A.$\frac{27}{16}$B.$\frac{27}{8}$C.$\frac{63}{4}$D.$\frac{63}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案