分析 (I)由a1,a1+a2,2(a1+a4)成等比數(shù)列,可得$({a}_{1}+{a}_{2})^{2}$=2a1•(a1+a4),即$(2{a}_{1}+2)^{2}$=2a1(2a1+6),解得a1即可得出.
(II)bn=an+2n-1=(2n-1)+2n-1.再利用等差數(shù)列與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(I)∵等差數(shù)列{an}的公差為2,
∴a2=a1+2,a4=a1+6,
∵a1,a1+a2,2(a1+a4)成等比數(shù)列,
∴$({a}_{1}+{a}_{2})^{2}$=2a1•(a1+a4),即$(2{a}_{1}+2)^{2}$=2a1(2a1+6),解得a1=1.
∴an=1+2(n-1)=2n-1.
(II)bn=an+2n-1=(2n-1)+2n-1.
∴數(shù)列{bn}的前n項(xiàng)和Sn=$\frac{n(1+2n-1)}{2}$+$\frac{{2}^{n}-1}{2-1}$=n2+2n-1.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3x+2y+1=0 | B. | 3x-2y+1=0 | C. | -2x+3y+1=0 | D. | 2x-3y+1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{9}{32}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{64}$ | D. | $\frac{5}{64}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -21 | B. | -19 | C. | 19 | D. | 21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x=$\frac{π}{6}$ | B. | x=$\frac{5π}{12}$ | C. | x=$\frac{π}{3}$ | D. | x=$\frac{7π}{12}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com