11.若變量x,y滿足$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}\right.$,則z=$\frac{y}{x+1}$的取值范圍是[0,1].

分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義結(jié)合斜率公式進行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
z的幾何意義為區(qū)域內(nèi)的點到點(-1,0)的斜率,
由圖象知CD的斜率最小為0,
AD的斜率最大,
由$\left\{\begin{array}{l}{x-2y+2=0}\\{x+y-1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$.即A(0,1),
此時z=$\frac{y}{x+1}$=$\frac{1}{1}$=1,
即0≤z≤1,
故答案為:[0,1]

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用直線斜率的幾何意義,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.指出下列命題,p是q的什么條件,q是p的什么條件.
(1)p:x$>\frac{1}{a}$,q:x>$\frac{1}{a}$+1.
(2)p:x≥$\frac{1}{2}$,q:x2-x+$\frac{1}{4}$=0.
(3)p:(x+1)(x+2)=0,q:x<0.
(4)p:a<b,q:|a-b|≥a-b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.f(x)=ax2-x+2有兩個零點,則a的取值范圍是(-∞,0)∪(0,$\frac{1}{8}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$\frac{1}{x}$+$\frac{1}{y}$=1,且x>0,y>0,則$\frac{16x}{x-1}$+$\frac{4y}{y-1}$的最小值為( 。
A.16B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在半徑為常數(shù)r,圓心角為2θ(0<2θ<π)的扇形OAB內(nèi)作一內(nèi)切圓P,再在扇形內(nèi)作一個與扇形兩條半徑相切并與圓P外切的小圓Q.
(1)當(dāng)2θ=$\frac{π}{3}$時,求圓Q的半徑;
(2)當(dāng)θ為變量時,求圓Q的半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知sinαcosα=$\frac{1}{8}$,且$\frac{π}{4}$<$α<\frac{π}{2}$,則sinα-cosα的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,點P在直線BC上,點Q在△ABC所在的平面內(nèi)運動,且滿足$\overrightarrow{PQ}$=$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$,則點Q的運動軌跡是過點A平行于BC的一條直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=cos2x的圖象向右平移φ(0<φ<$\frac{π}{2}$)個單位后,與函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象重合,則φ=(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖所示,PO⊥平面ABC,BO⊥AC,在圖中與AC垂直的直線有4條.

查看答案和解析>>

同步練習(xí)冊答案