16.已知sinαcosα=$\frac{1}{8}$,且$\frac{π}{4}$<$α<\frac{π}{2}$,則sinα-cosα的值為$\frac{\sqrt{3}}{2}$.

分析 根據(jù)α的范圍,確定cosα-sinα的符號(hào),然后利用平方,整體代入,開方可得結(jié)果.

解答 解:因?yàn)?\frac{π}{4}$<$α<\frac{π}{2}$,所以cosα-sinα<0,所以(cosα-sinα)2=1-2sinαcosα=$\frac{3}{4}$,
所以cosα-sinα=-$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$

點(diǎn)評(píng) 本題是基礎(chǔ)題,考查三角函數(shù)的化簡(jiǎn)求值,注意平方關(guān)系的應(yīng)用,角的范圍以及三角函數(shù)的符號(hào)是解題的關(guān)鍵,考查計(jì)算能力,推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow{AB}$=(3,-1),$\overrightarrow{ON}$=(-2,0),若$\overrightarrow{AB}$=$\overrightarrow{MN}$,則$\overrightarrow{OM}$等于( 。
A.(1,-1)B.(5,-1)C.(-5,1)D.(1,-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知R上的偶函數(shù)f(x)在[0,+∞)上是單調(diào)減函數(shù),若f(1)>f(log2$\frac{1}{x}$),則x的取值范圍為[2,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)滿足對(duì)任意x∈R都有f(x)+f(-x)=0,且在(-∞,0]上的圖象如圖所示,則關(guān)于x的不等式$\frac{f(x)-f(-x)}{x}$<0的解集為(  )
A.(-∞,-2)∪(2,+∞)B.(-2,0)∪(2,+∞)C.(-2,2)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若變量x,y滿足$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}\right.$,則z=$\frac{y}{x+1}$的取值范圍是[0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.己知|$\overrightarrow{a}$|=|$\overrightarrow$|=1,且$\overrightarrow{a}$與$\overrightarrow$的夾角為60°
(I)求|$\overrightarrow{a}$+$\overrightarrow$|與|$\overrightarrow{a}$-2$\overrightarrow$|;
(Ⅱ)求$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如果關(guān)于x的不等式x2-(a-1)x+1<0的解集為∅,則實(shí)數(shù)a的取值范圍是(-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.定義在實(shí)數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A,B為常數(shù)),使得f(x)≥g(x)對(duì)一切實(shí)數(shù)x都成立,那么稱g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).下列說法正確的有:①③.(寫出所有正確說法的序號(hào))
①對(duì)給定的函數(shù)f(x),對(duì)承托函數(shù)可能不存在,也可能有無數(shù)個(gè);
②定義域和值域都是R的函數(shù)f(x),不存在承托函數(shù);
③g(x)=ex為函數(shù)f(x)=ex的一個(gè)承托函數(shù);
④函數(shù)f(x)=$\frac{x}{{x}^{2}+x+1}$不存在承托函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=sinxcos2$\frac{α}{2}$+$\frac{1}{2}$cosxsinα-$\frac{1}{2}$sinx(0<α<π)在x=π時(shí)有最小值-$\frac{1}{2}$.
(1)求α的值;
(2)在△ABC中,a,b,c分別是角A,B,C所對(duì)的邊,已知a=1,b=$\sqrt{3}$,f(A)=$\frac{\sqrt{3}}{4}$,求角C的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案