分析 (Ⅰ)先求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,從而求出函數(shù)的單調(diào)區(qū)間;
(Ⅱ)分別求出函數(shù)f(x)的最大值和最小值,從而得到|f(x1)-f(x2)|≤f(1)-f(3),根據(jù)(m+ln3)a-2ln3>$\frac{2}{3}$-4a+(a-2)ln3,求出m的范圍即可.
解答 解:(Ⅰ)由題意得函數(shù)f(x)的定義域是(0,+∞),
f′(x)=$\frac{2-a}{x}$-$\frac{1}{{x}^{2}}$+2a=$\frac{2{ax}^{2}+(2-a)x-1}{{x}^{2}}$,
當(dāng)a<-2時(shí),-$\frac{1}{a}$<$\frac{1}{2}$,令f′(x)<0,得:0<x<-$\frac{1}{a}$或x>$\frac{1}{2}$,
令f′(x)>0,得-$\frac{1}{a}$<x<$\frac{1}{2}$,
當(dāng)-2<a<0時(shí),得-$\frac{1}{a}$>$\frac{1}{2}$,
令f′(x)<0,得0<x<$\frac{1}{2}$或x>-$\frac{1}{a}$,
令f′(x)>0,得$\frac{1}{2}$<x<-$\frac{1}{a}$,
當(dāng)a=-2時(shí),f′(x)=$\frac{{(2x-1)}^{2}}{{x}^{2}}$<0,
綜上所述,當(dāng)a<-2時(shí),f(x)的遞減區(qū)間為(0,-$\frac{1}{a}$)和($\frac{1}{2}$,+∞)單調(diào)區(qū)間為(-$\frac{1}{a}$,$\frac{1}{2}$),
當(dāng)a=-2時(shí),f(x)在(0,+∞)單調(diào)遞減,
當(dāng)-2<a<0時(shí),f(x)的遞減區(qū)間為(0,$\frac{1}{2}$)和(-$\frac{1}{a}$,+∞),遞增區(qū)間為:($\frac{1}{2}$,-$\frac{1}{a}$).
(Ⅱ)由(Ⅰ)得,當(dāng)x∈(-3,-2]時(shí),f(x)在區(qū)間[1,3]上單調(diào)遞減,
當(dāng)x=1時(shí),f(x)取得最大值,當(dāng)x=3時(shí),f(x)取得最小值,
|f(x1)-f(x2)|≤f(1)-f(3)=(1-2a)-[(2-a)ln3+$\frac{1}{3}$+6a]=$\frac{2}{3}$-4a+(a-2)ln3,
∵|f(x1)-f(x2)|<(m+ln3)a-2ln3恒成立,
∴(m+ln3)a-2ln3>$\frac{2}{3}$-4a+(a-2)ln3,整理得ma>$\frac{2}{3}$-4a,
∵a<0,∴m<$\frac{2}{3a}$-4恒成立,∵-3<a<-2,∴-$\frac{13}{3}$<$\frac{2}{3a}$-4<-$\frac{38}{9}$,
∴m≤-$\frac{13}{3}$.
點(diǎn)評(píng) 本題考察了函數(shù)的單調(diào)性,考察導(dǎo)數(shù)的應(yīng)用,考察分類(lèi)討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)為偶函數(shù)且最小正周期為π | B. | f(x)為奇函數(shù)且最小正周期為π | ||
C. | f(x)為偶函數(shù)且最小正周期為2π | D. | f(x)為奇函數(shù)且最小正周期為2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題p∨q是假命題 | B. | 命題p∧q是真命題 | ||
C. | 命題p∧(¬q)是真命題 | D. | 命題p∨(¬q)是假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$+1 | B. | $\sqrt{2}$+1 | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com