12.已知O、A、B三地在同一水平面內(nèi),A地在O地正東方向2km處,B地在O地正北方向2km處,某測繪隊(duì)員在A、B之間的直線公路上任選一點(diǎn)C作為測繪點(diǎn),用測繪儀進(jìn)行測繪,O地為一磁場,距離其不超過$\sqrt{3}$km的范圍內(nèi)會(huì)測繪儀等電子儀器形成干擾,使測量結(jié)果不準(zhǔn)確,則該測繪隊(duì)員能夠得到準(zhǔn)確數(shù)據(jù)的概率是( 。
A.1-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.1-$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

分析 作出圖形,以長度為測度,即可求出概率.

解答 解:由題意,△AOB是直角三角形,OA=OB=2,所以AB=2$\sqrt{2}$,
O地為一磁場,距離其不超過$\sqrt{3}$km的范圍為$\frac{1}{4}$個(gè)圓,與AB相交于C,D兩點(diǎn),作OE⊥AB,則OE=$\sqrt{2}$,所以CD=2,所以該測繪隊(duì)員能夠得到準(zhǔn)確數(shù)據(jù)的概率是1-$\frac{2}{2\sqrt{2}}$=1-$\frac{\sqrt{2}}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問題,考查概率的計(jì)算,正確確定CD是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f′(x)是f(x)的導(dǎo)函數(shù).當(dāng)x∈[0,π]時(shí),0<f(x)<1; 當(dāng)x∈(0,π)且x≠$\frac{π}{2}$時(shí),(x-$\frac{π}{2}$)f′(x)>0.則函數(shù)y=f(x)-sinx在[-3π,3π]上的零點(diǎn)個(gè)數(shù)為( 。
A.4B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.對(duì)定義在[0,1]上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)f(x)稱為M函數(shù):
(i) 對(duì)任意的x∈[0,1],恒有f(x)≥0;
(ii) 當(dāng)x1≥0,x2≥0,x1+x2≤1時(shí),總有f(x1+x2)≥f(x1)+f(x2)成立.
則下列四個(gè)函數(shù)中不是M函數(shù)的個(gè)數(shù)是( 。
①f(x)=x2②f(x)=x2+1
③f(x)=ln(x2+1)④f(x)=2x-1.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行下面的程序框圖,如果輸入的依次是1,2,4,8,則輸出的S為( 。
A.2B.2$\sqrt{2}$C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若a∈[0,1),當(dāng)x,y滿足$\left\{\begin{array}{l}{x-ay-2≤0}\\{x-y+1≥0}\\{2x+y-4≥0}\end{array}\right.$時(shí),z=x+y的最小值為( 。
A.4B.3C.2D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知直線l,m和平面α,β( 。
A.若l∥α,l∥β,則α∥βB.若l∥α,m∥α,則l∥mC.若l⊥α,m⊥β,則l∥mD.若l⊥α,l⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=x3的圖象為曲線C,給出以下四個(gè)命題:
①若點(diǎn)M在曲線C上,過點(diǎn)M作曲線C的切線可作一條且只能作一條;
②對(duì)于曲線C上任意一點(diǎn)P(x1,y1)(x1≠0),在曲線C上總可以找到一點(diǎn)Q(x2,y2),使x1和x2的等差中項(xiàng)是同一個(gè)常數(shù);
③設(shè)函數(shù)g(x)=|f(x)-2sin2x|,則g(x)的最小值是0;
④若f(x+a)≤8f(x)在區(qū)間[1,2]上恒成立,則a的最大值是1.
其中真命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,等腰梯形ABCD的底邊分別為6和4,高為3.
(1)求等腰梯形外接圓的方程;
(2)求外接圓的坐標(biāo)和半徑長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2x-2lnx,求函數(shù)在點(diǎn)(1,f(1))處的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案