10.若2x+3y+z=7,則x2+y2+z2的最小值為$\frac{7}{2}$.

分析 由條件利用柯西不等式(22+32+12)(x2+y2+z2)≥(2x+3y+z)2,求得x2+y2+z2的最小值.

解答 解:12+22+32=14,∴由柯西不等式可得(22+32+12)(x2+y2+z2)≥(2x+3y+z)2=72,
∴x2+y2+z2≥$\frac{49}{14}$=$\frac{7}{2}$,即x2+y2+z2的最小值是$\frac{7}{2}$,
故答案為:$\frac{7}{2}$.

點(diǎn)評 本題主要考查了函數(shù)的最值,以及柯西不等式的應(yīng)用,解題的關(guān)鍵是利用柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2,進(jìn)行解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.把函數(shù)g(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{3}$個單位長度得到函數(shù)y=f(x)的圖象(如圖).
(1)求函數(shù)g(x)的解析式;
(2)若g(x0)=-$\frac{11}{14}$,x0∈($\frac{2π}{3}$,$\frac{3π}{4}$),求sin2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow{m}$=(x,y),向量$\overrightarrow{v}$=(x+2y,tan$\frac{x}{2}$tany)的對應(yīng)關(guān)系可用$\overrightarrow{v}$=f($\overrightarrow{m}$)表示,試求在向量$\overrightarrow{m}$=(α,β)(α,β∈(0,$\frac{π}{2}$)),使得f($\overrightarrow{m}$)=($\frac{2π}{3}$,2-$\sqrt{3}$)成立?如果存在,求$\overrightarrow{m}$,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在區(qū)間[-2,2]上隨機(jī)取一個數(shù)x,使得|x|-|x-1|≥1成立的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在四棱錐P-ABCD中,AB∥CD,AB⊥AD,AB=2,AD=$\sqrt{2}$,CD=1,PA⊥平面ABCD,PA=2.
(Ⅰ)設(shè)平面PAB∩平面PCD=m,求證:CD∥m;
(Ⅱ)設(shè)點(diǎn)Q為線段PB上一點(diǎn),且直線QC與平面PAC所成角的正切值為$\frac{\sqrt{2}}{2}$,求$\frac{PQ}{PB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若f(n)=1+$\frac{1}{{\sqrt{2}}}$+$\frac{1}{{\sqrt{3}}}$+…+$\frac{1}{{\sqrt{n}}}$,n∈N,當(dāng)n≥3時(shí),證明:f(n)>$\sqrt{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-\sqrt{x},x≥0}\\{{2}^{x},x<0}\end{array}\right.$,則f(f(4))=$\frac{1}{2}$,f(x)的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某商場為了提高利潤決定進(jìn)行廣告促銷,已知在沒有進(jìn)行廣告促銷之前的商場的利潤為500萬元,據(jù)推算每投入廣告費(fèi)x萬元,則增加銷售利潤100-$\frac{100}{x+1}$萬元.
(1)假設(shè)y為投入廣告費(fèi)x萬元后商場得到的總利潤,試求y與x之間的函數(shù)關(guān)系式;
(2)問廣告投入為多少萬元時(shí),商場能獲得利潤最大?并求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知f(x)是定義在(0,+∞)上的單調(diào)遞減函數(shù),f′(x)是其導(dǎo)函數(shù),若 $\frac{f(x)}{f′(x)}$>x,則下列不等關(guān)系成立的是( 。
A.f(2)<2f(1)B.3f(2)>2f(3)C.ef(e)<f(e2D.ef(e2)>f(e3

查看答案和解析>>

同步練習(xí)冊答案