A. | f(2)<2f(1) | B. | 3f(2)>2f(3) | C. | ef(e)<f(e2) | D. | ef(e2)>f(e3) |
分析 令g(x)=$\frac{f(x)}{x}$,求導(dǎo)g′(x)=$\frac{f′(x)x-f(x)}{{x}^{2}}$,從而可判斷函數(shù)g(x)在(0,+∞)上是增函數(shù),從而得到答案.
解答 解:令g(x)=$\frac{f(x)}{x}$,故g′(x)=$\frac{f′(x)x-f(x)}{{x}^{2}}$,
∵f(x)是定義在(0,+∞)上的單調(diào)遞減函數(shù),f′(x)是其導(dǎo)函數(shù),
∴f′(x)<0,
∵$\frac{f(x)}{f′(x)}$>x,
∴xf′(x)-f(x)>0,
∴函數(shù)g(x)在(0,+∞)上是增函數(shù),
故$\frac{f(3)}{3}$>$\frac{f(2)}{2}$>$\frac{f(1)}{1}$,$\frac{f({e}^{3})}{{e}^{3}}$>$\frac{f({e}^{2})}{{e}^{2}}$>$\frac{f(e)}{e}$,
故2f(3)>3f(2),f(2)>2f(1),
f(e3)>ef(e2),ef(e)<f(e2);
故選C.
點(diǎn)評 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及函數(shù)的性質(zhì)的判斷與應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{5}{3}$ ) | B. | [0,$\frac{5}{3}$] | C. | [1,$\frac{5}{3}$ ) | D. | [1,$\frac{5}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com