1.圓柱的軸截面為邊長為a的正方形,則此圓柱的全面積為$\frac{3π}{2}a$.

分析 根據(jù)已知求出底面半徑和高,然后求出表面積.

解答 解:∵圓柱的軸截面為邊長為a的正方形,
∴圓柱底面半徑r=$\frac{1}{2}$$\sqrt{a}$,
圓柱的高h(yuǎn)=$\sqrt{a}$,
故圓錐的全面積:S=2πr(r+h)=$\frac{3π}{2}a$,
故答案為:$\frac{3π}{2}a$.

點(diǎn)評(píng) 本題是基礎(chǔ)題,考查圓柱的表面積與軸截面的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.觀察下列等式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…若某數(shù)n3按上述規(guī)律展開后,發(fā)現(xiàn)等式右邊含有“2015”這個(gè)數(shù),則n=( 。
A.44B.45C.46D.47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)$f(x)={cos^2}x+\frac{1}{2}sin(2x+\frac{π}{2})-\frac{1}{2}$.
(1)求f(x)在$(\frac{π}{6},\frac{2π}{3})$上的值域.
(2)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若角C滿足$f(\frac{C}{2})=\frac{{\sqrt{2}}}{2}$且邊$c=\sqrt{2}a$,求角A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.一條自西向東的河流,其流速為3m/s.一艘輪船欲從南岸駛向北岸,輪船在靜水中的流速為5m/s,問輪船必須向什么方向航行才能使航行距離最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.變量 x、y滿足線性約束條件$\left\{\begin{array}{l}{3x+y-2≤0}\\{y-x≤2}\\{y≥x-1}\end{array}\right.$,則目標(biāo)函數(shù)z=(k+1)x-y,僅在點(diǎn)(0,2)取得最小值,則k的取值范圍是( 。
A.k<-4B.-4<k<0>C.-2<k<0D.k>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,四棱錐P-ABCD中,AB∥CD,AB⊥AD,BC=CD=2AB=2,△PAD是等邊三角形,M、N分別為BC、PD的中點(diǎn).
(Ⅰ)求證:MN∥平面PAB;
(Ⅱ)若平面ABCD⊥平面PAD,求直線MN與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知p:2+2=5,q:3≥2,則下列判斷中,錯(cuò)誤的是( 。
A.p或q為真,非q為假B.p或q為真,非p為真
C.p且q為假,非p為假D.p且q為假,p或q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知tanα+sinα=a(a≠0),tanα-sinα=b,則cosα等于( 。
A.$\frac{a+b}{2}$B.$\frac{a-b}{2}$C.$\frac{a+b}{a-b}$D.$\frac{a-b}{a+b}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,二面角α-l-β為60°,點(diǎn)A、B分別為平面α和平面β上的點(diǎn),點(diǎn)A到l的距離為|AC|=4,點(diǎn)B到l的距離為|BD|=5,|CD|=6,求:
(1)A與B兩點(diǎn)間的距離|AB|;
(2)異面直線AB、CD所成角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案