12.函數(shù)y=cos(sinx)的最小正周期是( 。
A.$\frac{π}{2}$B.πC.D.

分析 根據(jù)三角函數(shù)的周期的定義和性質(zhì)進(jìn)行推導(dǎo)即可.

解答 解:若函數(shù)的周期是$\frac{π}{2}$,
則f(x+$\frac{π}{2}$)=cos(sin(x+$\frac{π}{2}$))=cos(cosx)≠cos(sinx),
若函數(shù)的周期是π,
則f(x+π)=cos(sin(x+π))=cos(-sinx)=cos(sinx)=f(x),
即函數(shù)的周期是π,
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)周期的計(jì)算和判斷,根據(jù)選擇項(xiàng)進(jìn)行驗(yàn)證即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為迎接2022年北京冬奧會(huì),推廣滑雪運(yùn)動(dòng),某滑雪場(chǎng)開展滑雪促銷活動(dòng),該滑雪場(chǎng)的收費(fèi)標(biāo)準(zhǔn)是:滑雪時(shí)間不超過1小時(shí)免費(fèi),超過1小時(shí)的部分每小時(shí)收費(fèi)標(biāo)準(zhǔn)為40元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙兩人相互獨(dú)立地來該滑雪場(chǎng)運(yùn)動(dòng),設(shè)甲、乙不超過1小時(shí)離開的概率分別為$\frac{1}{4}$,$\frac{1}{6}$;1小時(shí)以上且不超過2小時(shí)離開的概率分別為$\frac{1}{2}$,$\frac{2}{3}$;兩人滑雪時(shí)間都不會(huì)超過3小時(shí).
(Ⅰ)求甲、乙兩人所付滑雪費(fèi)用相同的概率;
(Ⅱ)設(shè)甲、乙兩人所付的滑雪費(fèi)用之和為隨機(jī)變量ξ.求ξ的分布列與數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知∠A+∠B=120°.
(1)將函數(shù)y=sin2A+sin2B化為y=Asin(wx+φ)的形式;
(2)求函數(shù)y的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=2+2cosφ}\\{y=2+2sinφ}\end{array}\right.$(φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,邊長(zhǎng)為3的等邊三角形,在極坐標(biāo)系中其重心在極點(diǎn).
(I)求該等邊三角形外接圓C2的極坐標(biāo)方程;
(Ⅱ)設(shè)曲線C1、C2交于A、B兩點(diǎn),求|AB|的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若實(shí)數(shù)x,y滿足x2-4xy+4y2+4x2y2=4,則當(dāng)x+2y取得最大值時(shí),$\frac{x}{y}$的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若{n2-an+5}是遞增數(shù)列,則a的取值范圍是(-∞,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{c}$|=1,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$,<$\overrightarrow$,$\overrightarrow{c}$>=$\frac{π}{2}$,<$\overrightarrow{c}$,$\overrightarrow{a}$>=$\frac{π}{4}$化簡(jiǎn)($\overrightarrow{a}$+2$\overrightarrow$-2$\overrightarrow{c}$)•(-3$\overrightarrow{a}$+2$\overrightarrow$+$\overrightarrow{c}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=m+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為:ρ2cos2θ=1
(1)以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立直角坐標(biāo)系,求曲線C的直角坐標(biāo)方程;
(2)若求直線,被曲線c截得的弦長(zhǎng)為2$\sqrt{10}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知命題p:函數(shù)$f(x)={x^3}+a{x^2}+({a+\frac{4}{3}})x+6$在(-∞,+∞)上有極值,命題q:雙曲線$\frac{y^2}{5}-\frac{x^2}{a}=1$的離心率e∈(1,2).若p∨q是真命題,p∧q是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案