【題目】在中,分別為三邊中點(diǎn),將分別沿向上折起,使重合,記為,則三棱錐的外接球表面積的最小值為( )
A.B.C.D.
【答案】B
【解析】
將三棱錐S﹣EFG補(bǔ)充成長(zhǎng)方體,則對(duì)角線長(zhǎng)分別為,,設(shè)長(zhǎng)方體的長(zhǎng)寬高分別為x,y,z,推導(dǎo)出x2+y2+z2=28+,由基本不等式得,能求出三棱錐S﹣EFG的外接球面積的最小值.
由題意得三棱錐S﹣EFG的對(duì)棱分別相等,將三棱錐S﹣EFG補(bǔ)充成長(zhǎng)方體,
則對(duì)角線長(zhǎng)分別為,,設(shè)長(zhǎng)方體的長(zhǎng)寬高分別為x,y,z,
則x2+y2=4m,y2+z2=56,x2+z2=4n,∴x2+y2+z2=28+,
又∵,,且=9,當(dāng)且僅當(dāng)取等號(hào),
∴x2+y2+z2=28+,∴三棱錐S﹣EFG的外接球面積的最小值為:.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體ABCDEF中,四邊形ADEF為正方形,AD∥BC,AD⊥AB,AD=2BC=2.
(1)證明:平面ADEF⊥平面ABF.
(2)若平面ADEF⊥平面ABCD,二面角A-BC-E為30°,三棱錐A-BDF的外接球的球心為O,求異面直線OC與DF所成角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,為邊的中點(diǎn),沿將折起,點(diǎn)折至處(平面),若為線段的中點(diǎn),則在折起過(guò)程中,下列說(shuō)法錯(cuò)誤的是( )
A.始終有平面
B.不存在某個(gè)位置,使得面
C.點(diǎn)在某個(gè)球面上運(yùn)動(dòng)
D.一定存在某個(gè)位置,使得異面直線與所成角為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)前,以“立德樹(shù)人”為目標(biāo)的課程改革正在有序推進(jìn).高中聯(lián)招對(duì)初三畢業(yè)學(xué)生進(jìn)行體育測(cè)試,是激發(fā)學(xué)生、家長(zhǎng)和學(xué)校積極開(kāi)展體育活動(dòng),保證學(xué)生健康成長(zhǎng)的有效措施.程度2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠(yuǎn)、擲實(shí)心球、1分鐘跳繩三項(xiàng)測(cè)試,三項(xiàng)考試滿分50分,其中立定跳遠(yuǎn)15分,擲實(shí)心球15分,1分鐘跳繩20分.某學(xué)校在初三上期開(kāi)始時(shí)要掌握全年級(jí)學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測(cè)試,得到下邊頻率分布直方圖,且規(guī)定計(jì)分規(guī)則如下表:
每分鐘跳繩個(gè)數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(Ⅰ)現(xiàn)從樣本的100名學(xué)生中,任意選取2人,求兩人得分之和不大于35分的概率;;
(Ⅱ)若該校初三年級(jí)所有學(xué)生的跳繩個(gè)數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和方差估計(jì)總體的期望和方差,已知樣本方差(各組數(shù)據(jù)用中點(diǎn)值代替).根據(jù)往年經(jīng)驗(yàn),該校初三年級(jí)學(xué)生經(jīng)過(guò)一年的訓(xùn)練,正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)都有明顯進(jìn)步,假設(shè)今年正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)比初三上學(xué)期開(kāi)始時(shí)個(gè)數(shù)增加10個(gè),現(xiàn)利用所得正態(tài)分布模型:
預(yù)計(jì)全年級(jí)恰有2000名學(xué)生,正式測(cè)試每分鐘跳182個(gè)以上的人數(shù);(結(jié)果四舍五入到整數(shù))
若在全年級(jí)所有學(xué)生中任意選取3人,記正式測(cè)試時(shí)每分鐘跳195以上的人數(shù)為ξ,求隨機(jī)變量的分布列和期望.
附:若隨機(jī)變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),PO垂直于圓O所在的平面,且.D為線段AC的中點(diǎn).
(1)求證:平面平面;
(2)若點(diǎn)E在線段PB上,且,求三棱錐體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比稱為“直線關(guān)于圓的距離比”.
(1)設(shè)圓求過(guò)點(diǎn)P的直線關(guān)于圓的距離比的直線方程;
(2)若圓與軸相切于點(diǎn)A且直線關(guān)于圓C的距離比求出圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且(b+c)tanC=﹣ctanA.
(1)求A;
(2)若b,c=2,點(diǎn)D在BC邊上,且AD=BD,求AD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左頂點(diǎn)為,兩個(gè)焦點(diǎn)與短軸一個(gè)頂點(diǎn)構(gòu)成等腰直角三角形,過(guò)點(diǎn)且與x軸不重合的直線l與橢圓交于M,N不同的兩點(diǎn).
(Ⅰ)求橢圓P的方程;
(Ⅱ)當(dāng)AM與MN垂直時(shí),求AM的長(zhǎng);
(Ⅲ)若過(guò)點(diǎn)P且平行于AM的直線交直線于點(diǎn)Q,求證:直線NQ恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】年月,電影《毒液》在中國(guó)上映,為了了解江西觀眾的滿意度,某影院隨機(jī)調(diào)查了本市觀看影片的觀眾,現(xiàn)從調(diào)查人群中隨機(jī)抽取部分觀眾.并用如圖所示的表格記錄了他們的滿意度分?jǐn)?shù)(分制),若分?jǐn)?shù)不低于分,則稱該觀眾為“滿意觀眾”,請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問(wèn)題.
組別 | 分組 | 頻數(shù) | 頻率 |
第組 | |||
第組 | |||
第組 | |||
第組 | |||
第組 | |||
合計(jì) |
(1)寫(xiě)出、的值;
(2)畫(huà)出頻率分布直方圖,估算中位數(shù);
(3)在選取的樣本中,從滿意觀眾中隨機(jī)抽取名觀眾領(lǐng)取獎(jiǎng)品,求所抽取的名觀眾中至少有名觀眾來(lái)自第組的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com