【題目】已知橢圓的左頂點為,兩個焦點與短軸一個頂點構(gòu)成等腰直角三角形,過點且與x軸不重合的直線l與橢圓交于M,N不同的兩點.

(Ⅰ)求橢圓P的方程;

(Ⅱ)當(dāng)AM與MN垂直時,求AM的長;

(Ⅲ)若過點P且平行于AM的直線交直線于點Q,求證:直線NQ恒過定點.

【答案】(1);(2);(3)證明見解析.

【解析】

1)由題意布列關(guān)于ab的方程組,即可得到結(jié)果;

2)由垂直得,結(jié)合點在曲線上,可得M點坐標(biāo),結(jié)合兩點間距離公式可得結(jié)果;

3)設(shè),,由題意,設(shè)直線的方程為,利用韋達定理即可得到結(jié)果.

(1)因為,所以

因為兩個焦點與短軸一個頂點構(gòu)成等腰直角三角形,

所以 ,

,

所以

所以橢圓方程為 .

(2)方法一:

設(shè),

, ,

,

,

,(舍)

所以.

方法二:

設(shè),

因為垂直,

所以點在以為直徑的圓上,

又以為直徑的圓的圓心為,半徑為,方程為,

,(舍)

所以

方法三:

設(shè)直線的斜率為 ,其中

化簡得

當(dāng)時,

顯然直線存在斜率且斜率不為0.

因為垂直,

所以 ,

, ,

所以

(3)直線恒過定點,

設(shè),

由題意,設(shè)直線的方程為,

顯然,,則,

因為直線平行,所以,

的直線方程為,

,則,即 ,

,

直線的方程為,

,得,

因為,故,

所以直線恒過定點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角, 所對的邊分別為, ,且.

(Ⅰ)求角的大小;

(Ⅱ)已知 的面積為,求的周長.

【答案】(Ⅰ).(Ⅱ).

【解析】試題分析】(I)利用正弦定理和三角形內(nèi)角和定理化簡已知,可求得的值,進而求得的大小.(II)利用余弦定理和三角形的面積公式列方程組求解的的值,進而求得三角形周長.

試題解析】

(Ⅰ)由及正弦定理得, ,

,∴,

又∵,∴.

又∵,∴.

(Ⅱ)由, ,根據(jù)余弦定理得,

的面積為,得.

所以 ,得,

所以周長.

型】解答
結(jié)束】
18

【題目】為促進農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),某地政府扶持興建了一批“超級蔬菜大棚”.為了解大棚的面積與年利潤之間的關(guān)系,隨機抽取了其中的7個大棚,并對當(dāng)年的利潤進行統(tǒng)計整理后得到了如下數(shù)據(jù)對比表:

大棚面積(畝)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

年利潤(萬元)

6

7

7.4

8.1

8.9

9.6

11.1

由所給數(shù)據(jù)的散點圖可以看出,各樣本點都分布在一條直線附近,并且有很強的線性相關(guān)關(guān)系.

(Ⅰ)求關(guān)于的線性回歸方程;

(Ⅱ)小明家的“超級蔬菜大棚”面積為8.0畝,估計小明家的大棚當(dāng)年的利潤為多少;

(Ⅲ)另外調(diào)查了近5年的不同蔬菜畝平均利潤(單位:萬元),其中無絲豆為:1.5,1.7,2.1,2.2,2.5;彩椒為:1.8,1.9,1.9,2.2,2.2,請分析種植哪種蔬菜比較好?

參考數(shù)據(jù): , .

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,分別為三邊中點,將分別沿向上折起,使重合,記為,則三棱錐的外接球表面積的最小值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),.有下列命題:

①對,恒有成立.

,使得成立.

③“若,則有.”的否命題.

④“若,則有.”的逆否命題.

其中,真命題有_____________.(只需填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖1,是某設(shè)計員為一種商品設(shè)計的平面logo樣式.主體是由內(nèi)而外的三個正方形構(gòu)成.該圖的設(shè)計構(gòu)思如圖2,中間正方形的四個頂點,分別在最外圍正方形ABCD的邊上,且分所在邊為a,b兩段.設(shè)中間陰影部分的面積為,最內(nèi)正方形的面積為.當(dāng),且取最大值時,定型該logo的最終樣式,則此時a,b的取值分別為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)求曲線在點處的切線方程;

(Ⅱ)當(dāng)時,求證:函數(shù)存在極小值;

(Ⅲ)請直接寫出函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的公差,數(shù)列滿足,集合.

(1)若,求集合;

(2)若,求使得集合恰好有兩個元素;

(3)若集合恰好有三個元素:,是不超過7的正整數(shù),求的所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,平面,,,的中點,的中點,點上,

1)證明:平面平面;

2)證明:平面

3)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的導(dǎo)函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時,證明;

(Ⅲ)設(shè)為函數(shù)在區(qū)間內(nèi)的零點,其中,證明.

查看答案和解析>>

同步練習(xí)冊答案