【題目】定義:圓心到直線(xiàn)的距離與圓的半徑之比稱(chēng)為“直線(xiàn)關(guān)于圓的距離比”.
(1)設(shè)圓求過(guò)點(diǎn)P的直線(xiàn)關(guān)于圓的距離比的直線(xiàn)方程;
(2)若圓與軸相切于點(diǎn)A且直線(xiàn)關(guān)于圓C的距離比求出圓C的方程.
【答案】(1)或;(2)或
【解析】
(1)分析直線(xiàn)斜率不存在時(shí)不合題意;設(shè)過(guò)點(diǎn)P(﹣1,0)的直線(xiàn)方程為y=k(x+1),由已知圓的方程求得圓心坐標(biāo)與半徑,再由“直線(xiàn)關(guān)于圓的距離比”求解,則直線(xiàn)方程可求;
(2)設(shè)圓的方程為,由題意可得關(guān)于a,b,r的方程,聯(lián)立方程組求解a,b,r的值,則圓的方程可求.
(1)當(dāng)直線(xiàn)的斜率不存在時(shí),則直線(xiàn)方程為x=﹣1,圓心坐標(biāo)為(2,0),半徑為1,
不滿(mǎn)足圓心到直線(xiàn)的距離與圓的半徑之比為,則所求直線(xiàn)的斜率存在.
設(shè)過(guò)點(diǎn)的直線(xiàn)方程為,由圓的圓心為,半徑為,
由題意可得,解得,
所以所求直線(xiàn)的方程為或
(2)設(shè)圓的方程為,
由題意可得……①,,……②,……③
由①②③聯(lián)立方程組,可得或,
所以圓C的方程為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方體的棱上(除去棱AD)到直線(xiàn)與的距離相等的點(diǎn)有個(gè),記這個(gè)點(diǎn)分別為,則直線(xiàn)與平面所成角的正弦值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某客戶(hù)考察了一款熱銷(xiāo)的凈水器,使用壽命為十年,改款凈水器為三級(jí)過(guò)濾,每一級(jí)過(guò)濾都由核心部件濾芯來(lái)實(shí)現(xiàn).在使用過(guò)程中,一級(jí)濾芯需要不定期更換,其中每更換個(gè)一級(jí)濾芯就需要更換個(gè)二級(jí)濾芯,三級(jí)濾芯無(wú)需更換.其中一級(jí)濾芯每個(gè)元,二級(jí)濾芯每個(gè)元.記一臺(tái)凈水器在使用期內(nèi)需要更換的二級(jí)濾芯的個(gè)數(shù)構(gòu)成的集合為.如圖是根據(jù)臺(tái)該款凈水器在十年使用期內(nèi)更換的一級(jí)濾芯的個(gè)數(shù)制成的柱狀圖.
(1)結(jié)合圖,寫(xiě)出集合;
(2)根據(jù)以上信息,求出一臺(tái)凈水器在使用期內(nèi)更換二級(jí)濾芯的費(fèi)用大于元的概率(以臺(tái)凈水器更換二級(jí)濾芯的頻率代替臺(tái)凈水器更換二級(jí)濾芯發(fā)生的概率);
(3)若在購(gòu)買(mǎi)凈水器的同時(shí)購(gòu)買(mǎi)濾芯,則濾芯可享受折優(yōu)惠(使用過(guò)程中如需再購(gòu)買(mǎi)無(wú)優(yōu)惠).假設(shè)上述臺(tái)凈水器在購(gòu)機(jī)的同時(shí),每臺(tái)均購(gòu)買(mǎi)個(gè)一級(jí)濾芯、個(gè)二級(jí)濾芯作為備用濾芯(其中,),計(jì)算這臺(tái)凈水器在使用期內(nèi)購(gòu)買(mǎi)濾芯所需總費(fèi)用的平均數(shù).并以此作為決策依據(jù),如果客戶(hù)購(gòu)買(mǎi)凈水器的同時(shí)購(gòu)買(mǎi)備用濾芯的總數(shù)也為個(gè),則其中一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù)應(yīng)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓及直線(xiàn):.
(1)證明:不論取什么實(shí)數(shù),直線(xiàn)與圓C總相交;
(2)求直線(xiàn)被圓C截得的弦長(zhǎng)的最小值及此時(shí)的直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,分別為三邊中點(diǎn),將分別沿向上折起,使重合,記為,則三棱錐的外接球表面積的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=1,{bn}滿(mǎn)足bn=2nan,b3=10,且{bn}是等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);
(2)求數(shù)列{an}的前n項(xiàng)和為Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),.有下列命題:
①對(duì),恒有成立.
②,使得成立.
③“若,則有且.”的否命題.
④“若且,則有.”的逆否命題.
其中,真命題有_____________.(只需填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(Ⅱ)當(dāng)時(shí),求證:函數(shù)存在極小值;
(Ⅲ)請(qǐng)直接寫(xiě)出函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com