12.已知等差數(shù)列{an}的前n項和Sn滿足:S5=30,S10=110,數(shù)列{bn}的前n項和Tn滿足:b1=1,bn+1-2Tn=1.
(1)求Sn與bn;
(2)比較Snbn與2Tnan的大小,并說明理由.

分析 (1)由等差數(shù)列前n項和公式列出方程組求出首項與公差,由此能求出Sn與bn;由$_{n}=\left\{\begin{array}{l}{{T}_{1},n=1}\\{{T}_{n}-{T}_{n-1},n≥2}\end{array}\right.$,能求出數(shù)列{bn}的通項公式.
(2)推導出Snbn=(n2+n)•3n-1,2Tnan=2n•(3n-1),由此利用作差法能比較Snbn與2Tnan的大。

解答 解:(1)設等差數(shù)列{an}的首項為a1,公差為d,
∵S5=30,S10=110,
∴$\left\{\begin{array}{l}{5{a}_{1}+\frac{5×4}{2}d=30}\\{10{a}_{1}+\frac{10×9}{2}d=110}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=2}\end{array}\right.$
∴an=2+(n-1)×2=2n,Sn=$\frac{n(2+2n)}{2}$=n2+n.…(3分)
對數(shù)列{bn},由已知有b2-2T1=1,即b2=2b1+1=3,
∴b2=3b1,(*)
又由已知bn+1-2Tn=1,可得bn-2Tn-1=1(n≥2,n∈N*),
兩式相減得bn+1-bn-2(Tn-Tn-1)=0,即bn+1-bn-2bn=0(n≥2,n∈N*),
整理得bn+1=3bn (n≥2,n∈N*),
結(jié)合(*)得$\frac{{{b_{n+1}}}}{b_n}=3$(常數(shù)),n∈N*,
∴數(shù)列{bn}是以b1=1為首項1,3為公比的等比數(shù)列,
∴bn=3n-1.…(7分)
(2)2Tn=bn+1-1=3n-1,
∴Snbn=(n2+n)•3n-1,2Tnan=2n•(3n-1),
于是Snbn-2Tnan=(n2+n)•3n-1-2n•(3n-1)=n[3n-1(n-5)+2],…(9分)
當n≤4(n∈N*)時,Snbn-2Tnan<0,即Snbn<2Tnan
當n≥5(n∈N*)時,Snbn-2Tnan>0,即Snbn>2Tnan
∴當n≤4(n∈N*)時,Snbn<2Tnan;當n≥5(n∈N*)時,Snbn>2Tnan.…(12分)

點評 本題考查數(shù)列的通項公式、前n項和公式的求法,考查兩個數(shù)的大小的求法,是中檔題,解題時要認真審題,注意作差法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.求f(x)=a•2x-4x(a∈R)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.當實數(shù)x,y滿足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$時,1≤ax+y≤4恒成立,則實數(shù)a的取值范圍( 。
A.[1,$\frac{3}{2}$]B.[-1,2]C.[-2,3]D.[1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},(x≤0)}\\{f(x-4),(x>0)}\end{array}\right.$,則f(2016)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-2-\frac{\sqrt{3}t}{2}}\\{y=\frac{1}{2}t}\end{array}\right.$曲線C2的極坐標方程為ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$),以極點為坐標原點,極軸為x軸正半軸建立平面直角坐標系.
(1)求曲線C2的直角坐標方程;
(2)求曲線C2上的動點M到直線C1的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知i為虛數(shù)單位,則復數(shù)$\frac{2}{1-i}$所對應的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設復數(shù)zn=xn+i•yn,其中xnyn∈R,n∈N*,i為虛數(shù)單位,zn+1=(1+i)•zn,z1=3+4i,復數(shù)zn在復平面上對應的點為Zn
(1)求復數(shù)z2,z3,z4的值;
(2)證明:當n=4k+1(k∈N*)時,$\overrightarrow{O{Z_n}}$∥$\overrightarrow{O{Z_1}}$;
(3)求數(shù)列{xn•yn}的前100項之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{{log}_3}x,x>0}\\{{2^x},x≤0}\end{array}}\right.$則f(f(f($\frac{1}{3}$)))=$lo{g}_{3}\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,x∈R)的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)當x∈[-$\frac{π}{2}$,$\frac{π}{2}$]時,求f(x)的取值范圍.

查看答案和解析>>

同步練習冊答案