分析 (1)設(shè)出直線l的方程及A,B,P的坐標(biāo),雙曲線方程聯(lián)立消去x,進(jìn)而根據(jù)韋達(dá)定理表示出y=y1+y2和x=x1+x2,進(jìn)而聯(lián)立消去m,即可求得P點(diǎn)的軌跡方程.
(2)分類討論,利用x1x2+y1y2=0,把兩根的和與積代入后整理得到結(jié)論.
解答 解:(1)設(shè)直線l:x=my+2,m≠±1,
并設(shè)點(diǎn)A,B,P的坐標(biāo)分別是A(x1,y1),B(x2,y2),P(x,y),
由x=my+2與雙曲線方程,消去x,得(m2-1)y2+4my+3=0,①
由直線l與雙曲線有兩個(gè)不同的交點(diǎn),可得△=(4m)2-12(m2-1)>0,即4m2+12>0,恒成立,
由$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,及方程①,得y=y1+y2=-$\frac{4m}{{m}^{2}-1}$,
x=x1+x2=(my1+2)+(my2+2)=-$\frac{4}{{m}^{2}-1}$,
將上方程組兩式相除得,m=$\frac{y}{x}$,代入到方程x=-$\frac{4}{{m}^{2}-1}$,
整理,得x2-y2-4x=0.
綜上所述,點(diǎn)P的軌跡方程為x2-y2-4x=0.
(2)當(dāng)過(guò)M(2,0)的直線l的斜率不存在時(shí),直線l的方程為x=2,把x=2代入雙曲線x2-y2=1得,A(2,$\sqrt{3}$),B(2,-$\sqrt{3}$),此時(shí)不滿足∠AOB=90°,
當(dāng)過(guò)M(2,0)的直線l的斜率存在時(shí),y1y2=$\frac{3}{{m}^{2}-1}$,
若∠AOB=90°,則x1x2+y1y2=$\frac{-{m}^{2}+4}{{m}^{2}-1}$+$\frac{3}{{m}^{2}-1}$=0
整理得,-m2+7=0.∴m=±$\sqrt{7}$,
∴存在直線L:x±$\sqrt{7}$y-2=0,使OAPB為矩形
點(diǎn)評(píng) 本題考查了直線與圓錐曲線的關(guān)系,直線與圓錐曲線的關(guān)系問題,常用“設(shè)而不求的”解題方法,即利用一元二次方程的根與系數(shù)關(guān)系求得直線與圓錐曲線的兩個(gè)交點(diǎn)的橫坐標(biāo)的和與積,此題考查了分類討論的數(shù)學(xué)思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 9 | C. | 16 | D. | 27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | 6 | C. | 3 | D. | 無(wú)法確定 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com