7.已知圓C:(x+m)2+y2=4上存在兩點(diǎn)關(guān)于直線x-y+3=0對(duì)稱(chēng),則實(shí)數(shù)m的值是( 。
A.-3B.6C.3D.無(wú)法確定

分析 因?yàn)閳A上兩點(diǎn)A、B關(guān)于直線x-y+3=0對(duì)稱(chēng),所以直線x-y+3=0過(guò)圓心(-m,0),由此可求出m的值.

解答 解:因?yàn)閳A上兩點(diǎn)A、B關(guān)于直線x-y+3=0對(duì)稱(chēng),
所以直線x-y+3=0過(guò)圓心(-m,0),
從而-m+3=0,即m=3.
故選:C.

點(diǎn)評(píng) 本題考查圓的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.定義在R上的偶函數(shù)f(x)滿足:對(duì)任意的x1,x2∈(-∞,0](x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,則( 。
A.f(-3)<f(-2)<f(1)B.f(1)<f(-2)<f(-3)C.f(-2)<f(1)<f(-3)D.f(-3)<f(1)<f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在區(qū)間[0,2π]上滿足e0-eπ≤θ-sinθ-π的θ的取值范圍是[0,2π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.過(guò)點(diǎn)M(2,0)作直線L交雙曲線x2-y2=1于A,B兩點(diǎn),若動(dòng)點(diǎn)P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$.
(1)求P點(diǎn)的軌跡方程;
(2)是否存在這樣的直線L,使OAPB為矩形,若存在,求出L的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.化簡(jiǎn)式子$\frac{{(2×\root{3}{a^2}•\sqrt)(-6×\sqrt{a}•\root{3})}}{{-3×\root{6}{a}•\root{6}{b^5}}}$=4a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=logax(a>0,a≠1),若f(x1)+f(x2)=2,則$f(x_1^3•x_2^3)$等于( 。
A.2B.6C.8D.${({{{log}_a}2})^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若雙曲線$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{t}$=1的焦點(diǎn)與橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的焦點(diǎn)相同,則雙曲線的虛軸長(zhǎng)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0相互平行”的充要條件是( 。
A.“a=-2或a=1”B.“a=1”C.“a=-2”D.“a=2或a=-1”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列函數(shù)中,定義域?yàn)椋?,+∞)的是( 。
A.$y=\frac{1}{{\sqrt{x}}}$B.y=x+1C.$y=\frac{1}{x^2}$D.y=2x

查看答案和解析>>

同步練習(xí)冊(cè)答案