若三角形的周長為L,面積為S,內(nèi)切圓半徑為r,則有r=
2S
L
,類比此結(jié)論:在四面體中設其表面積為S,體積為V,內(nèi)切球半徑為R,則有
 
考點:類比推理
專題:推理和證明
分析:根據(jù)平面與空間之間的類比推理,由點類比點或直線,由直線 類比 直線或平面,由內(nèi)切圓類比內(nèi)切球,由平面圖形面積類比立體圖形的體積,結(jié)合求三角形的面積的方法類比求四面體的體積即可.
解答: 解:設四面體的內(nèi)切球的球心為O,
則球心O到四個面的距離都是R,
所以四面體的體積等于以O為頂點,
分別以四個面為底面的4個三棱錐體積的和.
則四面體的體積為 V四面體A-BCD=
1
3
(S1+S2+S3+S4)R
∴R=
3V
S

故答案為:R=
3V
S
點評:本題考查類比推理的應用,類比推理是指依據(jù)兩類數(shù)學對象的相似性,將已知的一類數(shù)學對象的性質(zhì)類比遷移到另一類數(shù)學對象上去.一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(或猜想).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)過其左焦點F1作x軸的垂線交雙曲線于A,B兩點,若雙曲線右頂點在以AB為直徑的圓內(nèi),則雙曲線離心率的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a、b是兩條不同的直線,α、β是兩個不同的平面,給出下列四個判斷:
①若a⊥b,a⊥α,則b∥α
②若a⊥β,α⊥β,則a∥α
③若a∥α,a⊥β,則α⊥β
④若a⊥b,a⊥α,b⊥β,則α⊥β
其中正確的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y=-x2+mx-1和點A(3,0),B(0,3),則當拋物線C與線段AB有兩個不同交點時,m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,若a5=0,則有等式a1+a2+…+an=a1+a2+…+a9-n(n<9,n∈N*)成立.類比上述性質(zhì):在等比數(shù)列{bn}中,若b6=1,則有等式
 
成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在a>0,b>0的條件下,三個結(jié)論:
2ab
a+b
a+b
2
,
a+b
2
a2+b2
2
,
b2
a
+
a2
b
≥a+b,
其中正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
OA
|=1,|
OB
|=1,∠AOB=
3
,
OC
=
1
2
OA
+
1
4
OB
,則
OA
OC
的夾角大小為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

類比正弦定理,如圖,在三棱柱ABC-A1B1C1中,二面角B-AA1-C、C-BB1-A、B-CC1-A,所成的平面角分別為α、β、γ,則有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個結(jié)論:
①“2a>2b”是“l(fā)og2a>log2b”的充要條件;
②命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0沒有實數(shù)根,則m≤0”;
③函數(shù)f(x)=
(x-4)ln(x-2)
x-3
只有1個零點.
其中正確結(jié)論的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習冊答案