分析 (1)推導出AB⊥CD,BD⊥CD,從而CD⊥平面ABD,由此能證明平面ABD⊥平面ADC.
(2)由勾股定理求出BC,AB,由此能求出圓柱O1O的表面積.
解答 證明:(1)由已知可知AB⊥平面BCD,CD?平面BCD,
∴AB⊥CD…(1分)
∵點D是⊙O的圓周上異于異于B,C的點,BC是⊙O的直徑,
∴∠BDC是直角,即BD⊥CD…(2分)
又∵AB?平面ABD,BD?平面ABD,AB∩BD=B,
∴CD⊥平面ABD,…(4分)
∵CD?平面ADC,
∴平面ABD⊥平面ADC.…(6分)
解:(2)在Rt△BCD中,BD=2,CD=4,∠BDC=90°,
∴$BC=\sqrt{B{D^2}+C{D^2}}=\sqrt{{2^2}+{4^2}}=2\sqrt{5}$,…(8分)
由(1)知AB⊥平面BCD,BC?平面BCD,
∴AB⊥BC,即∠ABC=90°
∴$AB=\sqrt{A{C^2}-B{C^2}}=\sqrt{{6^2}-{{(2\sqrt{5})}^2}}=4$…(10分)
∴圓柱O1O的表面積為:
S表=S側+2S底=$2π•\frac{BC}{2}•AB+2π•{(\frac{BC}{2})^2}$=$(8\sqrt{5}+10)π$.…(14分)
點評 本題考查面面垂直的證明,考查圓柱的表面積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 增函數(shù) | B. | 減函數(shù) | C. | 奇函數(shù) | D. | 偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | -$\frac{2\sqrt{3}}{9}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {-2,-1,0,1,2} | B. | {-2,0,1,2} | C. | {-1,2} | D. | {-1,1,2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com