A. | 6 | B. | 26 | C. | $\sqrt{6}$ | D. | $\sqrt{26}$ |
分析 利用三角形的面積公式求出邊a;利用三角形的余弦定理求出邊b.
解答 解:在△ABC中,角A,B,C所對(duì)邊分別為a,b,c,且$c=\sqrt{2}$,B=45°,面積S=3,
∴S=$\frac{1}{2}$acsinB=$\frac{1}{2}a×\sqrt{2}×\frac{\sqrt{2}}{2}$=3.
∴a=6.
由余弦定理得:b2=a2+c2-2accosB=36+2-12×$\sqrt{2}×\frac{\sqrt{2}}{2}$=26.
∴b=$\sqrt{26}$.
故選:D.
點(diǎn)評(píng) 本題考查三角形的面積公式:三角形的面積等于任意兩邊與它們夾角正弦的一半、考查利用三角形的余弦定理求邊長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [2,4] | B. | (2,4) | C. | (2,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)的最小正周期是2π | B. | 當(dāng)x∈$[-\frac{π}{6},\frac{π}{3}]$時(shí),f(x)的值域?yàn)?[-\frac{{\sqrt{3}}}{4},\frac{{\sqrt{3}}}{4}]$ | ||
C. | f(x)的圖象關(guān)于直線(xiàn)x=$\frac{3π}{4}$對(duì)稱(chēng) | D. | 若x1≠x2,則f(x1)≠f(x2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | $3\sqrt{2}$ | C. | $4\sqrt{2}$ | D. | $12\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com